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Abstract 

 

The design of a controller for the continuous stirred tank reactor (CSTR) has been widely 

studied. Currently, conventional control methods based on operating point linearization which 

guarantee good performance in a suitable neighborhood of the operating point are mainly used. 

Nonlinear control laws suggest a larger range of good performance, if we are considering the 

system in the neighborhood of the equilibrium point, and it is mainly based on the input-output 

linearization methods. Regarding the nonlinear control laws, several approaches to modern 

feedback design start with a control Lyapunov function (clf) for a system, and use this function 

in order to construct a stabilizing feedback.  

In this thesis, the open loop behavior of a CSTR model is firstly studied. By observing the fact 

that system is unstable, the feedback design is taken into consideration. This has been done by 

implementing the Sontag’s stabilizer which is a consequence of Sontag’s theorem on nonlinear 

stabilization. This theorem states that the existence of a smooth clf implies smooth stabilizability 

[8]. We have considered the classical quadratic form as a Lyapunov functional. It is qualitatively 

shown that the constructed feedback parameters satisfy the necessary condition to prove that the 

suggested quadratic form is indeed clf. 

 

The first two chapters introduce the structural design of chemical reactors, and specifically 

CSTR reactors. Moreover, in Chapter 2, the set of governing nonlinear ODEs corresponding to 

the jacket cooled CSTR is obtained. The open loop behavior is briefly discussed in Chapter 3 and 

it is followed by the theoretic argument about the Sontag’s theorem and feedback design. Finally, 

in the last two chapters we explained the implemented program in Matlab and the simulation 

result is depicted. This thesis is finished by a short note on the possible future development 

regarding this research.  
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Chapter 1 

 

 

 

In this chapter we first review some of the basics of chemical equilibrium and reaction kinetics. 

We need to understand clearly the fundamentals about chemical reaction rates and chemical 

equilibrium, particularly the effects of temperature on rate and equilibrium for different types of 

reactions. Reactions are generally categorized as exothermic (releasing energy) or endothermic 

(requiring energy), as reversible (balance of reactants and products) or irreversible (proceeding 

completely to products), and as homogeneous (single-phase) or heterogeneous (multiphase). 

Subsequently, we will extensively discuss the reaction type which has been studied in this thesis 

with more details. Next, there will be a brief review on the different types of chemical reactors 

including Continues Stirred Tank Reactor (CSTR).  

 

1.1 FUNDAMENTALS OF KINETICS AND REACTION EQUILIBRIUM 

 

The reaction rate (rate of reaction) or speed of reaction for a reactant or product in a particular 

homogenous system is intuitively defined as how fast or slow a reaction takes place. For 

example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take 

many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of 

a second. Chemical kinetics is the part of physical chemistry that studies reaction rates. The rate 

at which a chemical reaction occurs depends primarily on temperature and the concentrations of 

reactants and products [1]. Other variables, such as pressure and reaction order could be also 

influencing the reaction rate, but usually it happens in a lower extent. It might be helpful to have 

a brief review of how the mentioned parameters influence a reaction. 

 

 Temperature: Usually conducting a reaction at a higher temperature delivers more energy 

into the system and increases the reaction rate by causing more collisions between 

particles, as explained by collision theory. However, the main reason that temperature 

increases the rate of reaction is that more of the colliding particles will have the 

necessary activation energy resulting in more successful collisions (when bonds are 

formed between reactants). 

 

 Concentration: Reaction rate increases with concentration, as described by the rate 

law and explained by collision theory. As reactant concentration increases, 

the frequency of collision increases. 

 

Reactor Basics 
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 Pressure: The rate of gaseous reactions increases with pressure, which is, in fact, 

equivalent to an increase in concentration of the gas. The reaction rate increases in the 

direction where there are fewer moles of gas and decreases in the reverse direction. For 

condensed-phase reactions, the pressure dependence is weak. 

 

 Order: The order of the reaction controls how the reactant concentration (or pressure) 

affects reaction rate. 

 

In heterogeneous systems, chemical reaction rates can become more complex because they may 

not be governed solely by chemical kinetics but also by the rate of mass and/or heat transfer, 

which often play significant roles. 

 

 

1.2 POWER LAW KINETICS 

  

If we consider the irreversible reaction with two reactants forming a product the overall rate of 

reaction K can be viewed as the moles of component A being consumed per unit time per unit 

volume.  

           (1.1) 

Sometimes reaction rates are based per mass of catalyst present. Of course, by stoichiometry in 

this system, the moles of component B consumed have to equal the moles of A, along with the 

moles of component C produced. The chemical reaction rate law is essentially an algebraic 

equation involving concentration, not a differential equation [2].  For example, the algebraic 

form of the rate law for mentioned reaction may be a function of concentrations, 

 

         
    

 
     (1.2) 

 

The exponents         are reaction orders for the respective two reactants. The actual reaction 

mechanism determines the form of the kinetic expression. For a given reaction, the particular 

concentration dependence that the rate law follows (i.e.        
    

 ,        
    

  or …) must be 

determined from experimental observation [2]. Each reaction rate coefficient k has a temperature 

dependency, which is usually given by the Arrhenius equation: 

 

     
 
  

       (1.3) 

E is the activation energy and R is the gas constant. Since at temperature T the molecules have 

energies given by a Boltzmann distribution, one can expect the number of collisions with energy 

greater than E to be proportional to   
  

  .    is the pre-exponential factor or frequency factor. The 

   pre-exponential factor is a large positive number (much greater than one) and has unit that 
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depends on the concentration units and the order of the reaction with respect to each component. 

The exponential term in Eq. (1.3) is a small positive number. Its minimum value is zero (when 
 

  
 

is infinite at very low absolute temperatures because of the negative sign in the exponential). Its 

maximum value is unity (when 
 

  
 is zero at very high temperatures). Therefore at low 

temperature the 
 

  
 term becomes large, which makes the exponential small and produces a low 

specific reaction rate. Conversely, at high temperature the 
 

  
 term becomes small, which makes 

the exponential approach unity (in the limit as temperature goes to infinity, the exponential term 

goes to one). Thus the specific reaction rate increases with increasing temperature [1]. Clearly 

the rate of change of      with temperature depends on the value of the activation energy. Figure 

1.1 compares the relative rates of reaction as a function of activation energy and temperature. 

 

 

 
Figure 1.1: Effect of activation energy on temperature dependence of reaction rate. 

The activation energies are 10, 20, and 30 
  

   
, and the reaction rates are calculated relative to a 

rate of unity at 300 K. Reactions with low activation energies are relatively insensitive to 
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temperature, whereas reactions with high activation energies are quite sensitive to temperature. 

This can be seen by comparing the slopes of the lines for the relative reaction rates versus 
 

 
. 

With activation energy of 10
  

   
, the change in reaction rate from 300 to 500 K is much less than 

the change at activation energy of 30
  

   
. Also, we see that the sensitivity of reaction rate to 

temperature is relatively greater at lower than at higher temperatures. Both of these observations 

play a role in the control of temperature in a chemical reactor. The main point of the discussion 

above is that the specific reaction rates always increase as temperature increases and the higher 

the activation energy, the more sensitive the reaction rate is to temperature. 

 

1.3 DETERMINING KINETIC PARAMETERS 

 

The many pre-exponential factors, activation energies and reaction order parameters required to 

describe the kinetics of chemical reactors must be determined, usually from laboratory, pilot 

plant, or plant experimental data. Ideally, the chemist or biologist has made extensive 

experiments in the laboratory at different temperatures, residence times and reactant 

concentrations. From these data, parameters can be estimated using a variety of mathematical 

methods. Some of these methods are quite simple. Others involve elegant statistical methods to 

attack this nonlinear optimization problem. A discussion of these methods is beyond the scope of 

this thesis. The reader is referred to the textbooks. In many practical applications, the engineer 

often has only plant performance data to use to back-calculate kinetic parameters. Data of this 

type are seldom extensive enough to permit precise calculation of all parameters since the plant 

normally operates in a fairly narrow window of operating conditions. However, useful simplified 

kinetics and parameters can often be determined that describe the major kinetics inside this 

region. Extrapolation outside the region from which the data has been obtained is very risky [1]. 

 

1.4 TYPES AND FUNDAMENTAL PROPERTIES OF REACTORS 

 

The chemical reactor is the heart of any chemical process. Chemical processes turn inexpensive 

chemicals into valuable ones, and chemical engineers are the only people technically trained to 

understand and handle them. While separation units are usually the largest components of a 

chemical process, their purpose is to purify raw materials before they enter the chemical reactor 

and to purify products after they leave the reactor. Here is a very generic flow diagram of a 

chemical process. 

 
 

           Products 

Raw materials            and 

           Byproducts  
 

Separation 

Process 

Chemical 

Process 

Separation 

Process 
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Raw materials from another chemical process or purchased externally must usually be purified to 

a suitable composition for the reactor to handle. After leaving the reactor, the unconverted 

reactants, any solvents, and all byproducts must be separated from the desired product before it is 

sold or used as a reactant in another chemical process. The key component in any process is the 

chemical reactor; if it can handle impure raw materials or not produce impurities in the product, 

the savings in a process can be far greater than if we simply build better separation units. In 

typical chemical processes the capital and operating costs of the reactor may be only 10 to 25% 

of the total, with separation units dominating the size and cost of the process. Yet the 

performance of the chemical reactor totally controls the costs and modes of operation of these 

expensive separation units, and thus the chemical reactor largely controls the overall economics 

of most processes. Improvements in the reactor usually have enormous impact on upstream and 

downstream separation processes [3]. 

 

 

 
 

Figure1.2: Typical Chemical Reactors 

 

Reactors can be operated in batch (no mass flow into or out of the reactor) or flow modes. Flow 

reactors operate between limits of completely unmixed contents (the plug-flow tubular reactor or 

PFTR) and completely mixed contents (the continuous stirred tank reactor or CSTR) [1]. 
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In the next chapter, we are going to study the CSTR reactors in details, since this system has 

been studied to be stabilized using Sontag’s universal stabilizer in the later chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
10 

Chapter 2 

 

 

 

The continuous flow stirred-tank reactor (CSTR), also known as back-mix reactor, is a 

common ideal reactor type in chemical engineering. A CSTR often refers to a model used to 

estimate the key unit operation variables when using a continuous agitated-tank reactor to reach a 

specified output. The mathematical model works for all fluids: liquids, gases, and slurries. The 

behavior of a CSTR is often approximated or modeled by that of a Continuous Ideally       

Stirred-Tank Reactor (CISTR). All calculations performed with CISTRs assume perfect mixing. 

In a perfectly mixed reactor, the output composition is identical to composition of the material 

inside the reactor, which is a function of residence time and rate of reaction. If the residence time 

is 5-10 times the mixing time, this approximation is valid for engineering purposes. The CISTR 

model is often used to simplify engineering calculations and can be used to describe research 

reactors. In practice it can only be approached, in particular in industrial size reactors. 

 

2.1 FUNDAMENTALS  

 

Figure 2.1 shows a vessel with an agitator for mixing, a jacket that surrounds the vessel for 

heating or cooling, feed lines entering the vessel and a liquid product stream exiting from the 

bottom. The liquid in the reactor is assumed to be perfectly mixed, that is, with no radial, axial, 

or angular gradients in properties (temperature and composition). The product stream has a 

composition and a temperature that are exactly the same as the contents of the liquid throughout 

the vessel. This is always true, both under steady-state conditions and dynamically at any point 

in time. 

 

This characteristic of a CSTR immediately generates an inherent weakness of the CSTR type of 

reactor, that is, the concentration of reactant in the vessel is the same as the concentration of 

reactant in the product. The concentration of reactant is inversely related to conversion. 

Fractional conversion   defined as 

 

  
      

   
     (2.1) 

       

If a high conversion is desired, the reactant concentration must be small. But the reaction rate 

depends directly on the reactant concentration. It also depends on the reactor volume. So, if a 

high conversion desired, the reactor must be large to compensate for the small reactant 

concentration. Thus a single CSTR is seldom used if high conversion is desired. Of course, using 

Continuous Stirred Tank Reactor 

 



 
11 

several CSTRs in series is one way to reduce the total reactor volume because only the last 

vessel will have the small reactant concentration [1]. 

 

 
Figure 2.1: Schematic CSTR with jacket. 

 

We will develop detailed steady-state and dynamic mathematical models of CSTRs in the next 

chapters with and irreversible exothermic single phase reaction. For the moment, let us just make 

some qualitative observations. There are several features of a CSTR that impact controllability: 

 

 A variety of methods and configurations can be used for heat transfer. Since heat transfer 

is one of the key issues in reactor control, the CSTR is usually more easily controlled 

than the other reactor types. 

 

 The temperature of the feed has some effect on controllability, but it is much less 

important in a CSTR than in a tubular reactor, if heat is being removed from the reactor, a 

feed that is at a lower temperature than the temperature in the reactor will reduce the heat 

transfer requirements. 

 

 Conversion is the fraction of a reactant that is fed to the reactor that reacts in the reactor. 

The level of conversion in a CSTR has a very significant impact on its stability and 

controllability. A high conversion means a small reactant concentration in the reactor 

vessel, so there is little “fuel” available to permit a reactor runaway. On the other hand, a 

low conversion means that there is plenty of reactant available to react. If the reaction is 

exothermic and irreversible, a reactor temperature runaway can more easily occur in a 
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CSTR operating with low reactant conversion than in one operating with high reactant 

conversion. In addition to affecting reactant concentration, the design conversion affects 

reactor size. Low conversion means a smaller reactor. This small reactor has less heat 

transfer area if an external jacket or an internal coil is used, which has a negative impact 

on controllability. 

 

 

2.2 FIRST ORDER IRREVERSIBLE EXOTHERMIC REACTION 

 

The type of reaction which has been taken to consideration for studying controllability in this 

thesis is the first order irreversible exothermic reaction. Prior to stating the CSTR model 

formulation it is necessary to have a quick review on the terms which define the reaction type. 

 

2.2.1 First Order Reaction: 

Consider the reaction (2.2) Where A is converted to B. 

 

 

        (2.2) 

 

   
    

  
 

    

  
            (2.3) 

 

Eq. (2.3), which defines the algebraic relation between reaction velocity and concentration, is 

called the rate law for the reaction. The exponent in the above equation in the term      means 

that the rate depends upon the concentration of the reactant [A] raised to the first power; i.e. it 

means that if the concentration of A is doubled, the rate also doubles. 

 

2.2.2 Irreversible Reaction: 

Chemical reactions which proceed to completion in one direction only are known as irreversible 

reactions. In irreversible reactions reactants are completely converted into products in a certain 

interval of time. In these reactions products do not form reactants again. 

 

2.2.3 Exothermic Reaction: 

An exothermic reaction is a chemical or physical reaction that releases heat. It gives out energy 

to its surroundings. The energy needed for the reaction to occur is less than the total energy 

released. 
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2.3 MASS, COMPONENT AND ENERGY BALANCE  

 

The fundamental balance equations resulting to the CSTR model for a first order irreversible 

exothermic reaction can be summarized in mass and energy balance equations. It might be 

helpful to have a quick look at the definition of these equations, before proceeding to formulating 

the CSTR model. 

 

2.3.1 Mass Balance: 

A mass balance, also called a material balance, is an application of conservation of mass to the 

analysis of physical systems. By accounting for material entering and leaving a system, mass 

flows can be identified which might have been unknown, or difficult to measure without this 

technique. The exact conservation law used in the analysis of the system depends on the context 

of the problem, but all revolve around mass conservation, i.e. that matter cannot disappear or be 

created spontaneously. 

 

 

2.3.2 Energy Balance: 

We can keep track of the movement of energy and changes in its form using energy balances, 

which are analogous to the mass balances we discussed in the previous section. We can do this 

because of the law of conservation of energy which states that energy can neither be produced 

nor destroyed. As long as we consider all the possible forms of energy, there is no term in energy 

balances which is analogous to the chemical reaction term in mass balances. That is, we can treat 

energy as a conservative substance 

 

Now we are well-equipped to introduce the Steady State CSTR model for a first order 

irreversible exothermic reaction. In the coming subsections the approach of deriving steady state 

and nonlinear dynamic model corresponds to the ones which have been developed in [1] and [4].  

 

2.4 STEADY STATE MODEL 

 

2.4.1 CSTR without Jacket 

In this section we study the steady-state design of perfectly mixed, continuously operating, liquid 

phase reactors. Consider the first order irreversible reaction (2.2) as explained in the first chapter 

the reaction rate K is 

             
 
  

         (2.4) 

 

Where 

 

K = by considering (2.3) is the consumption rate of reactant A (             ) 
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k = specific reaction rate (   ) 

  = concentration of reactant A in reactor (  
    

  
  ) 

  = pre-exponential factor (   ) 

E = Activation energy ( 
 

    
   

R = 8314 (              ) 

   = reactor temperature (K) 

 

As previously mentioned, the reactor steady state is described by three algebraic balances: a total 

mass balance, a component balance (since there are only two components), and an energy 

balance: 

 

Total mass balance: 

 

              (2.5) 

 

Component A balance: 

 

                                   (2.6) 

  

Reactor energy balance: 

 

                                    (2.7) 

 

Where 

 

    density of feed stream ( 
  

   ) 

   = rate of the feed flow ( 
  

 
 ) 

   = density of product stream ( 
  

   ) 

F = rate of product flow ( 
  

 
 ) 

    = concentration of reactant A in the feed (  
    

    ) 

   = volumetric holdup of liquid in reactor (   ) 

   = temperature of the feed (K)  

   = heat capacity of feed (             ) 

   = heat of the reaction ( 
 

    
   

Q = rate of heat removal from liquid in reactor ( 
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2.4.2 Jacket Cooled CSTR 

The Q term in Eq. (2.7) depends on the heat removal scheme used. If a circulating jacket water 

system is used, the jacket is essentially at one temperature   , and the heat transfer rate depends 

on the jacket area, the overall heat transfer coefficient and the differential temperature driving 

force 

 

                   (2.8) 

Where 

 

U = overall heat transfer coefficient (            ) 

  = jacket heat transfer area (   ) = π D L 

D = reactor diameter (m) 

L = reactor length (m) 

 

The consumption of the cooling medium is calculated from an energy balance around the 

perfectly mixed jacket at temperature   . Constant physical properties of the cooling medium are 

assumed 

 

                                  (2.9) 

 

Where 

 

    density of coolant ( 
  

   ) 

   = rate of the coolant flow ( 
  

 
 ) 

  = heat capacity of coolant (             ) 

     = supply temperature of cooling medium (K) 

 

The conversion   of reactant A is given by 

 

  
      

   
      (2.10) 

 

2.5 NONLINEAR DYNAMIC MODEL 

 

In this subchapter we derive the nonlinear dynamics of jacket cooled CSTR model by referring 

to [1] and [5]. In the coming chapters regarding this dynamical system, we will discuss the open 

loop control law and the feedback control design of the system using Sontag’s theory. 
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By recalling the reaction (2.2), the dynamic model of the reactor and jacket consists of four 

nonlinear ordinary differential equations: 

 

Total mass balance: 

 
       

  
               (2.11) 

 

Component A balance: 

 
         

  
                                          (2.12) 

 

Reactor energy balance: 

 
              

  
                                     (2.13) 

 

Where 

 

    density of feed stream ( 
  

   ) 

   = rate of the feed flow ( 
  

 
 ) 

   = density of product stream ( 
  

   ) 

F = rate of product flow ( 
  

 
 ) 

    = concentration of reactant A in the feed (  
    

    ) 

   = volumetric holdup of liquid in reactor (   ) 

   = temperature of the feed (K)  

   = heat capacity of feed (             ) 

   = heat of the reaction ( 
 

    
   

Q = rate of heat removal from liquid in reactor ( 
 

 
   

 

Note that the heat of reaction   is negative for exothermic reactions, so the third term on the 

right-hand side of Eq. (2.13) is positive. This means that an increase in the reaction rate tends to 

increase the reactor temperature. With a circulating jacket water system with a jacket 

temperature   , the heat transfer rate depends on the jacket area, the overall heat transfer 

coefficient, and by considering the differential temperature driving force, Eq. (2.8), the CSTR 

dynamical model can be expressed by the following ordinary differential equations: 
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The dynamical model of the jacket is: 

 
               

  
                                  (2.14) 

 

Where 

   = rate of the coolant flow ( 
  

 
 ) 

    density of coolant ( 
  

   ) 

   = heat capacity of coolant (             ) 

      = supply temperature of the coolant medium (K)  

 

If physical properties are assumed constant (densities and heat capacities), these terms can be 

pulled outside the time derivatives in Eqs. (2.11) to (2.14). If reactor volume is held constant (by 

a level controller) and the jacket volume is constant, the     and      terms can also be taken out 

of the derivatives. Equation (2.11) reduces to 

 

         (2.15) 

 

And the other three differential equations reduce to the following set: 

 

   

  
 

 

  
                 

 
  

        (2.16) 

 

   

  
 

 

  
         

        
 
  

    

     
 

             

        
     (2.17) 

 
   

  
 

  

  
            

             

         
     (2.18) 

 
In the next chapters, these three nonlinear ordinary differential equations will be used to simulate 

the dynamic performance of the CSTR. The open loop behavior applies when no controllers are 

used. In this case the flow rate of the cooling water (    is held constant. With closed loop 

behavior, a temperature controller is installed that manipulates cooling water flow to maintain 

reactor temperature. The controlling input signal will be generated by applying Sontag’s 

universal stabilizer.  
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Chapter 3 

 

 

In this chapter we study the open loop CSTR system. For this purpose, first we try to find the 

equilibrium point of the system and then we consider the eigenvalues of the Jacobian. This will 

help us know more about the nature of the equilibrium point. This will bring us a better insight 

before applying Sontag’s Theory.   

 

3.1 EQUILIBRUIM POINT OF CSTR MODEL 

 

In order to study the nature of the equilibrium point, we rewrite the system of nonlinear ODEs 

 

   

  
 

 

  
                 

 
  

        (3.1) 

 

   

  
 

 

  
         

        
 
  

    

     
 

             

        
     (3.2) 

 
   

  
 

  

  
            

             

         
     (3.3) 

 

Using the formulation [6]: 

                               (3.4) 

Where 

       

     
     
     

      

     
     
     

       (3.5) 

         

 
 
 
 
 
 
 

 

 

  
                 

 
  

   

 

  
         

        
 
  

    

     
 

             

        

             

         

 

 
 
 
 
 
 
 

     (3.6) 

Open Loop System 
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      (3.7) 

 

In order to find the equilibrium point we need to set the left hand side of Eq. (3.4) equal to zero, 

therefore 

 

       

 
 
 
 
 
 
 

 

 

  
                 

 
  

   

 

  
         

        
 
  

    

     
 

             

        

             

         

 

 
 
 
 
 
 
 

   

 
 

          

  

            (3.8) 

 

Now, as it was mentioned before let the conversion   of reactant A be 

 

  
      

   
      (3.9) 

 

Let  
  

 be the chosen operating point reaction conversion. By (3.9) it follows that the operating 

point concentration of reactant in the reactor,       is given by 

 

       
  

      (3.10) 

 

Now by substituting     by       in the first row of Eq. (3.8) we can find the equilibrium value 

for reactant temperature 

       
 

    
     

            
 
     (3.11) 

Similarly, by substituting equilibrium values for    and    in the second row of Eq. (3.8), we 

can find  

        
       

    
            

               
 

  
       

    
           (3.12) 
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Consequently, by plugging all the equilibrium values in the third row of Eq. (3.8) we can find the 

equilibrium value for the rate of coolant flow by 

       
                   

                    
     (3.13) 

In the next chapters, you will see that we consider    as the input of the open loop system, i.e. 

We manipulate cooling water flow rate to maintain the reaction conversion, the reactor 

temperature, and the jacket temperature at the chosen operating point. And while applying the 

Sontag’s theory, the constructed nonlinear control input will be added to      , and the sum will 

serve as the input of the closed loop system.  

 

3.2 NATURE OF EQUILIBRUIM POINT  

 

In this subchapter we are interested to study the nature of the equilibrium point in order to have a 

better intuition about the system’s behavior at equilibrium point. If the equilibrium is 

asymptotically stable or just stable, we might not need to implant the stabilizing feedback. 

Obviously it’s not the case, so we expect to observe that the system is unstable at its equilibrium. 

Following the classical way of studying the stability of dynamical systems, we will look for 

eigenvalues of the system’s Jacobean. If there is positive real eigenvalues or imaginary ones with 

positive real part, it can rigidly prove the instability of the system. 

 

The system of Eqs. (3.4) can be written as 

 

                                         (3.14) 

 

Where 

            

          

          

          

      (3.15) 

 

       

     
     
     

      

     
     
     

       (3.16) 

 

And the Jacobian of system is 

 

  
           

           
 

 
 
 
 
 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 
 
 
 
 

      (3.16) 
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     (3.17) 

 

 

Then by substituting x by equilibrium values, we have  

 

 

       

 
 
 
 
 
 
 

 

 
  

 
 

 
      

 
 

  
 

          

    
   

 
 

        

 

 
    

      
 

 
      

 
 

  
 

    

       
 

            

            
   

 
 

      

    

       

 
    

        
 

  

       
 

    

        

 

 
 
 
 
 
 
 

     (3.18) 

 

 

Where 

      

     

     

     

     

     

     

     

       (3.19) 

 

 

By calculating the eigenvalues of matrix (3.18) which has been done numerically in the next 

chapters you will see the system (3.14) has a negative real eigenvalues and a pair of complex 

conjugate eigenvalues with positive real part, which causes the steady state oscillation in the 

open loop system.  

 

In the next chapter, we will review the Sontag’s Universal Stabilizer theory. Then we will try to 

construct the control input as it’s mentioned in Sontag’s theory.  
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Chapter 4 

 

 

Several approaches to modern feedback design start with a control Lyapunov function for a 

system, and use the control Lyapunov function in order to construct a feedback stabilizer [7]. 

The Sontag’s theorem states that the existence of a smooth control-Lyapunov function implies 

smooth stabilizability [8]. In this chapter we state the feedback construction and Sontag’s 

theorem on nonlinear stabilization. Consequently, we will try to construct feedback design for 

CSTR model.  

 

4.1 INTRODUCTION 

 

This method concerns control systems of the type 

 

                                                                 (4.1) 

 

With states          and controls                            where f as well as the   's 

are smooth (i.e., infinitely differentiable,) vector fields and f(0) = 0. It is assumed that there is 

given a control Lyapunov function (henceforth just “clf’’) V for this system, that is, a smooth, 

proper, and positive definite function 

 

           

 

So that 

 

                                               (4.2) 

 

For each    . In the other words, V is so that for each nonzero state x one can diminish its 

value by applying some open loop control. Recall that positive definite means that        and 

       for    . And proper means that                 [8]. 

 

It is easy to show that the existence of such a clf implies that the system is asymptotically 

controllable (from any state one can asymptotically reach the origin); in the paper [9] it’s shown 

that the existence of a clf is in fact also necessary if there is asymptotic controllability, provided 

that one does not require smoothness (in which case Eq. (4.2) must be replaced by an equation 

involving Dini derivatives). More relevant to the topic of this paper, it was shown in [10] that if 

there is a clf, smooth as above, then there must be a feedback law 

 

Sontag's Theory on Nonlinear Stabilization 
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                  (4.3) 

 

This globally stabilizes the system and which is smooth on 

 

   
         

 

In general k may fail to be smooth everywhere, but under certain conditions, which we study 

later, k can be guaranteed to be at least continuous at the origin in addition to being smooth 

everywhere else [8].  

 

4.2 FEEDBACK CONSTRUCTION  

 

The construction is based on the following observation, which for introductory purposes we 

restrict to single-input (m = 1) systems only. Assume that V is a clf for the system 

 

                              (4.4) 

 

Denote 

 

                                           (4.5) 

 

The condition that V is clf is precisely the statement that 

 

                   (4.6) 

 

For all nonzero x. in other words, for each such x, the pair             is stabilizable. 

 

When seen as a single-input, one-dimensional linear system. On the other hand, giving a 

feedback law        for the original system, with the property that the same V is a Lyapunov 

function for the obtained closed-loop system 

 

                              (4.7) 

 

Is equivalent to  

 

                                   (4.8) 

 

That is 

                     (4.9) 
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For all nonzero x, In other words, k(x), seen as a 1×1 matrix, must be a constant linear feedback 

stabilizer for            , for each fixed x. We now interpret            , as a family of linear 

systems parameterized by x. This family depends smoothly on x. From the theory of families of 

systems or “systems over rings” we know that since each such linear system is stabilizable there 

exists indeed a smoothly dependent k as wanted. Moreover, this k can be chosen to be 

analytically or rationally dependent if the original family is, that is, if the original system and clf 

are [8]. The general theory is surveyed in [11], and the result in the smooth and analytic cases is 

due to [12], but in this very simple case (the family is one dimensional), the construction of k can 

be carried out directly without explicit recourse to the general result. Indeed, one can show 

directly that the following feedback law Works: 

 

    
        

 
     (4.10) 

 

This results from the solution of an LQ problem, and is analytic, in fact algebraic, on a; b. (The 

apparent singularity due to division by b is removable, as discussed later.) Along trajectories of 

the corresponding closed-loop system, one has that 

 
  

  
               (4.11) 

 

As desired. This feedback law may fail to be continuous at zero, however. If one modifies it 

slightly to 

 

    
        

 
     (4.12) 

 

Then under the natural hypotheses which are reviewed later this becomes continuous [8]. 

 

4.3 SONTAG’S THEORY 

 

We start with some definitions for the system (4.1). 

 

Definition let             be a mapping, smooth on    
  and with        this is a 

smooth feedback stabilizer for the system (4.1) provided that, with               , the closed 

loop system 

                                                                 (4.13) 

 

is globally asymptotically stable. 
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By global asymptotic stability we mean the usual concept: attraction (solutions are defined for 

    and every initial state, and converge to 0) plus local asymptotic stability (initial states 

produce trajectories near the origin). The fact that k may fail to be even continuous at the origin 

causes no problems regarding uniqueness of solutions, as is easy to verify from the definition of 

asymptotic stability. A sufficient (as well as necessary) condition for a given k to be a smooth 

feedback stabilizer is that there exist a Lyapunov function for the closed-loop system, i.e. a 

smooth, proper, and positive definite function V so that 

 

                                                                          (4.14) 

 

For all nonzero x. Observe that such a Lyapunov function is automatically a clf for the open loop 

system (4.1). Note also that if k happens to be continuous at the origin then the following 

property holds too               : 

 

For each     there is a     such that, if     satisfies       then there is some u with 

      such that 

 

                                             (4.15) 

 

We shall call this the small control property for the clf V. The existence of a clf with this 

property is necessary if there is any smooth stabilizer continuous at zero; part of Artstein's 

theorem is the statement that this is also sufficient [7].  

 

Theorem If there is a smooth clf V (respectively, the system as well as V are real analytic) 

then there is a smooth (respectively, real-analytic) feedback stabilizer k. If V satisfies the small 

control property, then k can be chosen to be also continuous at zero [7].  

 

For the proof you might take a look on [8]. 

 

4.4 CSTR FEEDBACK DESIGN 

 

In order to construct the CSTR feedback considering Sontag stabilizer we should study system’s 

behavior locally. Therefore by a translation to equilibrium point we can construct the feedback in 

the neighborhood of equilibrium point. By recalling Eqs. (3.5) – (3.9) and (3.19), we define the 

new system’s variable 

             

     
     
     

     

           

           

           

       (4.16) 
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And for clf we suggest quadratic form: 

 

                              (4.17) 

  

Where P is symmetric positive definite. Then by rewriting the f and g in terms of y 
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      (4.19) 

Therefore by recalling Eq. (4.5) 

 

                                (4.20) 

                                (4.21) 

 

And since P is symmetric positive definite,            therefore 

 

                                      (4.22) 

 

Now by plugging in these scalar values of a and b into Eq. (4.12), we can find the stabilizing 

feedback as 

 

    
                                            

          
     (4.23.1) 

 

In the next chapters, you will see that when we are studying the closed loop system,        will 

be considered as the input of the system. So the rate of coolant flow will be adjusted according to 

Sontag theorem. As you can see the (4.12) becomes discontinuous when   goes to zero. When 

this happens, solving the system of ODEs is impossible. In order to solve this problem, we 

slightly modify the feedback input [13]. Therefore we choose the feedback input as  
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      (4.23.2) 

 

Where r is chosen very small according to [13]. 

 

4.5 REVISITING THE CLF CONSIDERING FEEDBACK DESIGN 

 

In this subchapter we construct the stabilizer pair             using a symmetric positive 

definite matrix P. Consequently, we will consider condition (4.6) to make sure V is indeed clf for 

the CSTR system. 

 

Consider the fact that for many choices of positive definite matrices for P, the pair              

is not satisfying condition (4.6). Therefore, we started by taking identity matrix and tuning it in 

order to preserve positive definiteness and satisfy (4.6). The resulting matrix P is: 

 

    
     
   
   

                                          

 

Now by recalling Eqs. (4.22) and (4.16) we construct the pair             using this matrix P 

 

       
                       

        
   

     

      
 

 
   

 
        

  
 

          

        
               

 
    

 
 

 
   

 
         

  
                        (4.24) 

 

      
                       

  
      (4.25) 

 

By considering condition (4.6) in order make sure that the suggested quadratic form is indeed clf 

of the system, when      is equal to zero,      should be negative. Therefore we need to 

evaluate Eq. (4.24) at the nonzero roots of (4.25).  

 

                                                                        (4.26) 
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Now, for the nonzero roots of      (i.e.     and    ) we plotted      using Matlab. Considering 

Figures (4.1) and (4.2) we can see that for the nonzero roots of     ,      is negative, therefore 

according to (4.6) the quadratic form is clf and the pair (           is stabilizer.  

In the next chapter we will give a brief explanation about the implemented program in Matlab 

regarding the model and controller. Then it follows by simulation results for the open loop and 

closed loop system.  

 
Figure 4.1:       evaluated at the                   

 
 

Figure 4.2:      evaluated at the                      
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Chapter 5 

 

 

In this chapter the implemented program in Matlab will be studied. We have implemented jacket 

cooled CSTR in order to study open loop system. Consequently, by observing the fact that the 

equilibrium is unstable we will apply Sontag stabilizer as the feedback for closed loop system. In 

this case, when the stabilizing input is discontinuous, we modified the feedback using the method 

which is discussed in [13]. In the next chapter the simulation result will be shown. 

 

5.1 PARAMETERS 

 

System’s parameter values which have been considered in simulations are: 

    = 8.01 ( 
    

   ) ;   = 20.75      (   ) ; E = 69.71     (
 

    
  

R = 8314 (            ) ;    =            (
 

    
  ;    = 801 (

  

  ) 

   = 3137 (          ) ;  
 
  1000 (

  

  ) ;   = 4183 (          ) 

     = 294 (K) ; F =            (
  

 
) ;    = 102 (  ) 

U = 851 (         ) ;   =102 (  ) ;   =10.1 (  );    = 294 (K) 

 

The set of parameters has been taken from [6]. 

 

 

5.2 EQUILIBRIUM POINT, EIGENVALUES AND JACOBIAN 

 

5.2.1 Equilibrium Point 

In order to make sure the equilibrium values calculated in [6] are precise, we tried to compute 

them again by using above parameters. Therefore, by considering Eqs. (3.10) to (3.13) we wrote 

a very simple code to find the values in Matlab. The program can be found in the section A.1. 

 

5.2.2 Eigenvalues and System’s Jacobian 

Prior to studying open loop and closed loop system, it seemed crucial to have an idea about the 

nature of equilibrium. Regarding the theoretic argument in the section 3.2, we implemented a 

very simple algorithm (Section A.2) to find the system’s Jacobian (Eq. 3.17). Therefore by 

Implementation in Matlab 
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replacing the variables by equilibrium values (Eq. 3.18) and finding the eigenvalues of this 

matrix, we made sure that the equilibrium is unstable.  

 

5.3 OPEN LOOP SYSTEM 

 

The program implemented to study open loop behavior includes two separated codes, in the first 

one (Section A.3.1) we wrote a function which generates the CSTR nonlinear dynamics (Eqs. 3.1 

to 3.3). It should be taken into consideration that since the coolant flow rate (    appears in the 

third ODE, therefore you can modify its initial value in the section A.3.1. The second part of 

program (Section A.3.2) is to solve the system of ODEs. For this purpose we used the ode45 

solver which is already developed in Matlab library. Since, the system doesn’t reach the 

saturation state, so it’s not necessary to change time step for the solver. You can modify the 

integration time span and the variable’s initial values in this part of the program. 

5.4 CLOSED LOOP SYSTEM 

 

Similar to open loop system, the program (Section A.4) for applying Sontag’s stabilizer to CSTR 

model consists of two parts. The first part is similar to section A.3.1; moreover the feedback 

construction is embedded in the code. By considering the section 4.3 the feedback is built by 

suggesting a proper positive definite matrix. It may happen that      becomes approximately 

zero; therefore the feedback formula (Eq. 4.12) doesn’t make sense anymore. In order to solve 

this problem we used the Method which is discussed in [13]. The method is shortly explained at 

the end of section 4.3. In the second part of the program (Section A.4.2), we used ode15tb for 

solving the system of ODEs.  

 

5.5 CONSIDERING CLF CONDITION IN TERMS OF a(y) AND b(y) 

 

In order to conclude that if the suggested Lyapunov is indeed clf we can check if the condition 

(4.6) is satisfied. Therefore, after finding the roots of       we can evaluate the sign of a    by 

plotting it. In the program (Section A.5) it is also possible to see the symbolic formula of a    

and b   . 

 

In the next chapter we will review the simulation results of the implemented programs.  
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Chapter 6 

 

 

In this chapter we discuss the simulation results regarding Jacket cooled CSTR model. It starts 

by showing the fact that some of the eigenvalues of the system’s Jacobian are positive, therefore 

system is unstable. Then it follows by studying open loop and closed loop behavior of the 

system. The main point of this simulation is to gain smooth convergence of closed loop behavior 

to equilibrium values. 

 

6.1 EQUILIBRIUM VALUES 

 

Using the program which can be found in the section A1, by using the parameters from section 

5.1 the equilibrium point is calculated: 

      

     

     

     

     

     

     

     

     
       

        
        

       (6.1) 

 

By considering these values the equilibrium coolant flow rate is: 

                 (6.2) 

These values are considered as equilibrium values it the other simulations.     

 

6.2 EIGENVALUES OF JACOBIAN 

 

By running the program which is attached in the section A.2, the eigenvalues of system’s 

Jacobian are: 

   0.0001 - 0.0001i    ,       0.0001 + 0.0001i    ,                   (6.3) 

As you can see there is a pair of complex conjugate eigenvalues with positive real part, therefore 

we expect an oscillating open loop behavior. 

 

 

Simulation Results 
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6.3 OPEN LOOP BEHAVIOR 

 

As it is shown in the previous section, CSTR model has a pair of complex eigenvalues with 

positive real part, therefore it’s unstable. In the coming simulation, coolant flow rate    is 

considered as input. Reactant concentration, reactant and jacket temperatures are the system’s 

state variables, which are also the outputs. We have considered three different test cases for the 

open loop system. 

 Case 1: Initial values and input equal to equilibrium.  

 Case 2: Initial values equal to equilibrium values with an input far from equilibrium. 

 Case 3: Initial values far from the equilibrium and the input equal to equilibrium.  

The result is respectively shown in Fig. 6.1 to Fig. 6.3. 

6.4 CLOSED LOOP BEHAVIOR 

 

Using the theoretic arguments which discussed in the chapter 4, we implemented the Sontag’s 

stabilizing feedback for jacket cooled CSTR model. As it is stated at the end of section 4.3, when 

the stabilizing feedback goes to zero we used the alternate feedback design according to [13]. It 

should be taken into consideration this modification results in a bounded Lipschitz continues 

control feedback. In the figures 6.4 to 6.6 you can see the simulation results of the test cases for 

the stabilized system, except in this case the input is constructed using the construction discussed 

in section 4.3. The positive definite matrix P is chosen experimentally, i.e. by trying many PD 

matrices and preserving symmetry and positive definiteness.  

     
                           
                            
                             

       (6.4) 

 

                                       

 

Therefore P is positive definite and it fits the theorem. 
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Figure 6.1: Open Loop Behavior, Case 1. Initial Values and Input Are Equal to Equilibrium Values. 
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Figure 6.2: Open Loop Behavior, Case 2. Initial Values Are Far From Equilibrium Values and the Input Is Equal to 

Equilibrium. 

(                                                            
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Figure 6.3: Open Loop Behavior, Case 3. Initial Values Are Equal to Equilibrium Values and the Input Is Far From 

Equilibrium. 

(                                                  
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Figure 6.4:  Closed Loop Behavior, Case 1.   

(                                                    

 

Figure 6.5: Closed Loop Behavior, Case 2.   

(                                                    
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Figure 6.6: Closed Loop Behavior, Case 3.   

(                                              
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Future Developement 

 

The methodology that we have adopted in order to stabilize the CSTR model is rather new. 

Therefore applying Sontag’s stabilizer to CSTR model requires more theoretical consideration to 

gain a nicer feedback. We call it nicer to point out the fact that the feedback constructed by 

Sontag’s theorem may have some properties such as complete and locally Lipschitz continuity. 

According to [13] if the designed controller parameters      and      for         of class    

and positive real r and p, satisfy below hypotheses: 

                     

               

                
       

                         

    

      
   

 Then according to theorem 9 in [13], the feedback input 

     

 
 
 

 
  

                 

    
                         

     
                            

  
           

  

Is completely and locally Lipschitz continuous, in addition by considering the stabilizing input as 

                 then the solution exists for all    , where q is the tuning parameter, the 

closed loop system with a bounded additive disturbance      can approach any arbitrary 

neighborhood of the origin by increasing the tuning parameter.  

Moreover, CSTR feedback design can be studied as a discrete problem. In the other word, the 

system’s output can be discretized by sampling. Then the controller will be designed in discrete 

form. Consequently, the continuous stabilizing input can be generated by using zero order hold 

(ZOH) signal reconstruction block.    
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Apendices 

 

It might be questionable that why for every single section the parameters and equilibrium values 

are attached. The reason was to make it easier for the readers to check the results of every section 

just by copying the code to Matlab. 

A.1 PARAMETERS, INTERGRATION TIME SPAN AND INITIAL VALUES 

%---Model Parameters-------------------------------------------- 

CA_0 = 8.01;Lambda = - 69.71*10^6; 

E = 69.71*10^6; 

Cp = 3137;Cj = 4183;F = 4.377*10^-3;U = 851; 

Vj = 10.1;K_0 = 20.75*10^6;R = 8314; 

Ro = 801;Roj = 1000;Tc_in = 294; 

Vr = 102;Aj = 101;T_0 = 294; 

%---Calculating the Equilibrium Values-------------------------- 

% Reaction Conversion 

Re_con = 0.80; 

% Reactant Concentration 

CA_eq=CA_0*(1-Re_con) 

% Reactant Temperature 

Tr_eq=-E/(R*log((F*Re_con)/(K_0*Vr*(1-Re_con)))) 

% Jacket Temperature 

Tj_eq=-((F*Cp*Ro)/(U*Aj))*(T_0-Tr_eq)+(Lambda*CA_eq*K_0*Vr*exp(-

E/(R*Tr_eq)))/(U*Aj)+Tr_eq 

% Coolant Flow Rate 

Fj_eq=-((U*Aj*(Tr_eq-Tj_eq))/(Roj*Cj*(Tc_in-Tj_eq))) 

%---Initial Values Deviation w.r.t. Equilibrium Values---------- 

CA_percentage=1; 

Tr_percentage=1; 

Tj_percentage=1; 

X_eq=[CA_eq;Tr_eq;Tj_eq]; 

X0 = 

[CA_percentage*CA_eq;Tr_percentage*Tr_eq;Tj_percentage*Tj_eq]; 

%---Coolant Flow Deviation w.r.t Equilibrium Values------------- 

Flow_percentage=1; 

Fj=Flow_percentage*Fj_eq; 

%----Integration Time Span-------------------------------------- 

time_order=1; 

time=10^time_order; 
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A.2 EQUILIBRIUM POINT, EIGENVALUES AND JACOBIAN 

%---Parameters Values and Variables Definition------------------ 

syms x y z 

CA_0 = 8.01; Lambda = - 69.71*10^6; 

E = 69.71*10^6; Cp = 3137; 

Cj = 4183; F = 4.377*10^-3; 

U = 851; Vj = 10.1; 

K_0 = 20.75*10^6; R = 8314;  

Ro = 801; Roj = 1000; 

Tc_in = 294; Vr = 102; 

Aj = 101; T_0 = 294; 

%---Equilibrium Values------------------------------------------  

CA_eq = 1.6020; Tr_eq = 328.5763; 

Tj_eq = 310.2527; Fj_eq = 0.0232; 

%---Initial Values Deviation w.r.t. Equilibrium Values---------- 

CA_percentage=1; 

Tr_percentage=1; 

Tj_percentage=1; 

X_eq=[CA_eq;Tr_eq;Tj_eq]; 

X0 = 

[CA_percentage*CA_eq;Tr_percentage*Tr_eq;Tj_percentage*Tj_eq]; 

%---Coolant Flow Deviation w.r.t Equilibrium Values------------- 

Flow_percentage=1; 

Fj=Flow_percentage*Fj_eq; 

%----Integration Time Span-------------------------------------- 

time_order=1; 

time=10^time_order; 

%---Jacobian and Eigenvalues------------------------------------  

g=[(F/Vr)*(CA_0-x)-x*K_0*exp(-E/(R*y)); 

   (F/Vr)*(T_0-y)-(Lambda*x*K_0*exp(-E/(R*y)))/(Ro*Cp)-(U*Aj*(y-

z))/(Vr*Ro*Cp); 

   (Fj/Vj)*(Tc_in-z) + (U*Aj*(y-z))/(Vj*Roj*Cj)]; 

Jacobian=jacobian (g,[x,y,z]) 

p=eig(jacobian (g,[x,y,z])) 

eigenvalues=subs(p,{x,y,z},{CA_eq,Tr_eq,Tj_eq}) 
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A.3 OPEN LOOP SYSTEM 

A.3.1 System of ODEs 

function [dX,X] = CSTR2(~,X) 

 

CA_0 = 8.01; Lambda = - 69.71*10^6; 

E = 69.71*10^6; Cp = 3137; 

Cj = 4183; F = 4.377*10^-3; 

U = 851; Vj = 10.1; 

K_0 = 20.75*10^6; R = 8314;  

Ro = 801; Roj = 1000; 

Tc_in = 294; Vr = 102; 

Aj = 101; T_0 = 294; 

 

Flow_percentage=1; 

Fj_eq = 0.0232; 

Fj=Flow_percentage*Fj_eq; 

%---Generating the System of ODEs-------------------------------  

dX = zeros(3,1);     

dX(1) = (F/Vr)*(CA_0-X(1))-X(1)*K_0*exp(-E/(R*X(2))); 

dX(2) = (F/Vr)*(T_0-X(2))-(Lambda*X(1)*K_0*exp(-

E/(R*X(2))))/(Ro*Cp)-(U*Aj*(X(2)-X(3)))/(Vr*Ro*Cp); 

dX(3) = ((Fj)/Vj)*(Tc_in-X(3)) + (U*Aj*(X(2)-X(3)))/(Vj*Roj*Cj); 

 

end 

 

A.3.2 Solving System of ODEs 

clc 

close all 

CA_percentage=1; 

Tr_percentage=1; 

Tj_percentage=1; 

time_order=5.8; 

  

CA_eq = 1.6020; Tr_eq = 328.5763;Tj_eq = 310.2527; 

X0 = 

[CA_percentage*CA_eq;Tr_percentage*Tr_eq;Tj_percentage*Tj_eq]; 

X_eq=[CA_eq;Tr_eq;Tj_eq]; 

time=10^time_order; 

  

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]) 

[T,X] = ode45(@CSTR2,[0 time],X0,options) 
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whitebg('w') 

plot(T,X(:,1),'--',T,X(:,2),'--',T,X(:,3),'--') 

legend('Reactanc Concentration','Reactant Temprature','Jacket 

Temprature') 

Grid on 

  

figure 

plot(T,X(:,1),'r',T,CA_eq,'b','LineWidth',1.2) 

xlabel('Time') 

legend('Reactant Concentration','Equilibrium Value') 

grid on 

  

figure 

plot(T,X(:,2),'r',T,Tr_eq,'b','LineWidth',1.2) 

xlabel('Time') 

legend('Reactant Temperature','Equilibrium Value') 

grid on 

  

figure 

plot(T,X(:,3),'r',T,Tj_eq,'b','LineWidth',1.2) 

xlabel('Time') 

legend('Jacket Temperature','Equilibrium Value') 

grid on 

 

A.4 CLOSED LOOP SYSTEM 

A.4.1 Constructing the Feedback 

function [dX,X] = CSTR2_Sontag(~,X) 

  

CA_0 = 8.01; Lambda = - 69.71*10^6; E = 69.71*10^6; 

Cp = 3137; Cj = 4183; F = 4.377*10^-3; U = 851;  

Vj = 10.1; K_0 = 20.75*10^6; R = 8314;  

Ro = 801; Roj = 1000; Tc_in = 294;  

Vr = 102; Aj = 101; T_0 = 294; 

  

CA_eq = 1.6020; Tr_eq = 328.5763;Tj_eq = 310.2527; 

X_eq=[CA_eq;Tr_eq;Tj_eq]; 

 

P=10*10^-

6*(eye(3,3)+[1000000,0.05,0.001;0.05,0.01,0.001;0.001,0.001,0.01

]); 

P_Eigenvalues=eig(P) 

 

Y=[(X(1)-X_eq(1));(X(2)-X_eq(2));(X(3)-X_eq(3))]; 
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%---Feedback Construction---------------------------------------  

 

FF=[((F/Vr)*(CA_0-(X(1)-X_eq(1))))-((X(1)-X_eq(1))*K_0*exp(-

E/(R*(X(2)-X_eq(2))))); 

   ((F/Vr)*(T_0-(X(2)-X_eq(2))))-((Lambda*(X(1)-

X_eq(1))*K_0*exp(-E/(R*(X(2)-X_eq(2)))))/(Ro*Cp))-((U*Aj*((X(2)-

X_eq(2))-(X(3)-X_eq(3))))/(Vr*Ro*Cp)); 

   (U*Aj*((X(2)-X_eq(2))-(X(3)-X_eq(3))))/(Vj*Roj*Cj)]; 

  

GG=[0;0;(1/Vj)*(Tc_in-(X(3)-X_eq(3)))]; 

  

a=FF'*2*P*Y; 

b=GG'*2*P*Y; 

  

%---Sontag’s Stabilizer Combined with Method of SCL-------------   

r_SCL=10^(-5); 

 

if abs(b)<=r_SCL, 

    v=-((a+((a^2+b^4)^0.5)))*b/r_SCL^2; 

else 

v = -(a+((a^2+b^4)^0.5))/b; 

end; 

  

Flow_percentage=1; 

Fj_eq =0.0232; 

Fj=Flow_percentage*Fj_eq; 

up_SAT=10*Fj_eq; 

 

dX = zeros(3,1);    

dX(1) = ((F/Vr)*(CA_0-X(1)))-(X(1)*K_0*exp(-E/(R*X(2)))); 

dX(2) = ((F/Vr)*(T_0-X(2)))-((Lambda*X(1)*K_0*exp(-

E/(R*X(2))))/(Ro*Cp))-((U*Aj*(X(2)-X(3)))/(Vr*Ro*Cp)); 

dX(3) = (min(max((Fj+v),0),up_SAT))*((Tc_in-X(3))/Vj) + 

((U*Aj*(X(2)-X(3)))/(Vj*Roj*Cj)); 

   

end 

   

A.4.2 Stabilizing CSTR by Sontag’s Stabilizer  

clc 

close all 

CA_percentage=1.05; 

Tr_percentage=0.95; 

Tj_percentage=1.05; 

time_order=4.7; 

  

CA_eq = 1.6020; Tr_eq = 328.5763;Tj_eq = 310.2527; 
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X0 = 

[CA_percentage*CA_eq;Tr_percentage*Tr_eq;Tj_percentage*Tj_eq]; 

X_eq=[CA_eq;Tr_eq;Tj_eq]; 

time=10^time_order; 

  

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]); 

[T,X] = ode23tb(@CSTR2_Sontag,[0 time],X0,options); 

  

figure 

whitebg('w') 

plot(T,X(:,1),'--',T,X(:,2),'--',T,X(:,3),'--') 

legend('Reactanc Concentration','Reactant Temperature','Jacket 

Temperature') 

Grid on 

 

 

figure 

plot(T,X(:,1),'r',T,CA_eq,'b','LineWidth',1.2) 

xlabel('Time') 

legend('Reactant Concentration','Equilibrium Value') 

grid on 

  

figure 

plot(T,X(:,2),'r',T,Tr_eq,'b','LineWidth',1.2) 

xlabel('Time') 

legend('Reactant Temperature','Equilibrium Value') 

grid on 

  

figure 

plot(T,X(:,3),'r',T,Tj_eq,'b','LineWidth',1.2) 

xlabel('Time') 

legend('Jacket Temperature','Equilibrium Value') 

grid on 

 

A.5 CHECKING CLF CONDITION IN TERMS OF a(y) AND b(y) 

 

close all 

clc 

%---syms CA_0 Lambda E Cp Cj F U Vj----------------------------- 

%---K_0 R Ro Roj Tc_in Vr Aj T_0 Fj-----------------------------  

syms Y1 Y2 Y3  

CA_0 = 8.01; Lambda = - 69.71*10^6; E = 69.71*10^6; 

Cp = 3137; Cj = 4183; F = 4.377*10^-3 ; U = 851;  

Vj = 10.1; K_0 = 20.75*10^6; R = 8314;  

Ro = 801; Roj = 1000; Tc_in = 294;  
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Vr = 102; Aj = 101; T_0 = 294; 

Fj=0.0232; 

  

P=eye(3,3)+[500,1,1;1,1,1;1,1,0] 

eig(P) 

Y=[Y1;Y2;Y3]; 

  

FF=[((F/Vr)*(CA_0-Y1))-(Y1*K_0*exp(-E/(R*Y2))); 

   ((F/Vr)*(T_0-Y2))-((Lambda*Y1*K_0*exp(-E/(R*Y2)))/(Ro*Cp))-

(U*Aj*(Y2-Y3)/(Vr*Ro*Cp)); 

   (U*Aj*(Y2-Y3))/(Vj*Roj*Cj)]; 

  

GG=[0;0;(1/Vj)*(Tc_in-Y3)]; 

  

a=2*Y'*P'*FF; 

b=2*Y'*P'*GG; 

 

%---Evaluating a(y) At the Roots of b(y)------------------------  

a_y02=subs(a,{Y1,Y2,Y3},{Y1,Y2,294}); 

a_y03=subs(a,{Y1,Y2,Y3},{-Y2-Y3,Y2,Y3}); 

  

figure 

ezsurf(a_y02,[10^-6 10^6 10^-6 10^6]) 

grid on 

  

figure 

ezsurf(a_y03,[10^-6 10^6 10^-6 10^6]) 

grid on 
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