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Extended Abstract

A SIGNIFICANT CHALLENGE in dynamical network research is the accu-
rate mathematical description of spatiotemporal events and detectable communities
from an inferential as well as a compressional perspective. The inferential per-
spective allows us to answer particular macro-scale questions about the dataset; for
example, the evolution of particular research communities by analyzing dynami-
cal co-citation networks, the detection of groups of close knit friends by analyzing
online social interactions over a period of time, or even the detection of evolving
protein interaction modules by analyzing protein interaction networks. Whereas,
the compressional perspective comes from the realization that real world dynami-
cal networks typically model millions, or even billions of interactions, and handling
them computationally is a challenge in itself.

Traditional graph theoretical approaches with discrete time variation, where data
is modeled as a temporal sequence of graphical interactions between a set of nodes,
often fail to capture the true dynamics of such data as real world interactions tend to
have continuous temporal lengths. Hence it is necessary to consider discussing this
problem upon an environment which incorporates continuous time length description
with interaction data. This is where the link stream formalism comes in.

A link stream L is a tuple (T, V,E) which models interactions (E) between a
set of nodes (V ) over a time interval (T ). A link (b, e, u, v) is in E if two nodes u
and v in V have interacted from time b to time e (b, e ∈ T, b ≤ e). Link streams
model many real-world interactions between individuals, email exchanges, or net-
work traffic in continuous time. We use this formalism to describe spatiotemporal
modules, i.e., groups of nodes with same/equivalent interaction behavior over a
time interval. These spatiotemporal modules have dual functionality: describing
spatiotemporal events in the dataset (inferential perspective) and compressing the
original link stream into a much smaller, yet meaningful representation (compres-
sional perspective)

This thesis proposes a mathematical framework to deal with modular decom-
position and subsequent compression of link streams. We start by generalizing the
definition of modules in graphs to link streams. In a graph, a module M is a subset
of V such that all pairs of nodes in M have the same neighborhood. Analogously,
we define a module in a link stream as a couple (M,T ∗) consisting of a set of nodes
M ⊆ V and a time interval T ∗ ⊆ T such that all nodes in M share the same
neighborhood over T ∗.

These spatiotemporal modules can be used to achieve a lossless compression of
the original link stream. However, it might also be interesting to look at relaxed
versions of module structures, i.e., communities where nodes have approximately
similar neighborhood structure over a fixed time interval, as these kinds of modules
capture significant macro-scale similarity features in real-world interaction data by
ignoring insignificant micro-scale variations. Hence, we reduce the stringency of

iii



module definition to achieve more meaningful (yet lossy) module decomposition of
link streams. Intuitively, a relaxed module (M,T ∗) is such that the neighborhood
similarity of any pair of nodes in M over T ∗ is higher than a given threshold ε (first
precision parameter). We quantify this idea by extending the well known Jaccard
similarity index for spatiotemporal neighborhoods. We also take into consideration
intra-modular linkage structure, and quantify the idea of having either a sparse or
a dense module, based on whether the linkage density of the module induced sub
stream is either lower than a threshold η or higher than 1 − η (second precision
parameter). Hence the spatiotemporal modules in our study are depicted as ε, η-
relaxed modules.

Following module decomposition, the link stream is compressed (i.e., modules are
depicted as ”supernodes” and modular interactions as ”superlinks”). This compres-
sion is achieved using the minimum possible number of modules such that the loss
of information between the original and the decompressed link stream is minimal.
This is achieved by proposing an optimizable objective function which is interpreted
as a trade-off between the divergence and the complexity of the system.

The divergence term quantifies the loss of information between the original and
the decompressed link stream, where the decompressed link stream is achieved by
decoupling the modules to represent all the nodes and temporal interactions between
them. The divergence term in our study has been proposed as the Kullback-Leibler
(KL) divergence between the empirical weight distribution of the original and the
decompressed link stream. Hence, the best case scenario is when the divergence is
closer to zero, i.e., minimal difference between the original and the decompressed
weight distribution.

The complexity term can be interpreted as the data miner’s ”resource” con-
straint. Our interpretation of complexity is simply the number of modules used to
describe the complete link stream. Hence, we quantify complexity in our study as
the cardinality of the set of modules.

It is interesting to note that the precision parameters ε and η control the infor-
mation loss with continuous variation. E.g., high ε and η produce more stringent
modules (leading to overfitting), whereas low ε and η produce larger over-simplified
modules (leading to underfitting). Hence we can use ε and η to convert the module
decomposition based compression problem into a parametrized optimization prob-
lem: ”Select an upper bound to the complexity level in such a way that the divergence
is minimized”, and vice versa (the dual problem). Ultimately, the goal of this the-
sis is to describe the well-posedness of this optimization problem, so that efficient
algorithms can be developed for multiscale analysis of real world link streams using
modular decomposition.

∗ ∗ ∗
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CHAPTER1
Motivation

1.1 Context

WITH THE ADVENT of modern computational tools, massive sets of spatiotem-
poral interaction data are arising in various domains of application, ranging from
bioinformatics to online social networks. Storing, processing, learning on and infer-
ring from such abundant data requires innovative mathematical and computational
methods. For almost a decade, interaction data across different domains of interest
has been widely studied and analyzed using the theory of complex networks [1-3].
A plethora of measures have been proposed to deal with network complexity [4].
Most of these measures try to identify groups of nodes having similar interaction
behavior, e.g., groups of nodes which are densely connected to each other, or groups
of nodes which are connected to similar nodes in the rest of the network [5, 6]. Such
groups of nodes can correspond to several meaningful domain specific community
structures, ranging from protein complexes in the human interactome to research
communities in co-citation networks [4].

One major problem with most existing network complexity research in the last
decade is the inadequate concentration on the temporal aspect of real world net-
works [7]. Even though a lot of researchers have started to acknowledge for some
time that most real world networks are dynamic in nature [8], i.e., interactions be-
tween nodes can have time signatures (either time instances or intervals). Capturing
these dynamics is of utmost importance for meaningful representations of evolving
community structures in real world dynamical networks.

Several approaches have been proposed to tackle with temporal dynamics of
real networks [7] based on a strong foundation in graph theory. The most common
approach relies on analyzing series of graph snapshots: given a time window ∆, one
considers a graph Gt = (Vt, Et) and changes in the interaction patterns induced by a
constant change in time from t to t+∆, which generates a series of time constrained
graphs Gt, Gt+∆, Gt+2∆, and so on [7, 10, 11].

Two significant problems with this approach are, (1) choosing the exact value
of ∆: small ∆ produces redundant snapshots, whereas, large ∆ oversimplifies the
underlying dynamics and losses microscale variations, though being computationally
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efficient to deal with; and (2) depending on the internal dynamics of the system, the
value of ∆ might change over time as well as space, hence choosing a fixed value of
∆ might give rise to significant loss of inter-snapshot dynamics. As a matter of fact,
a lot of work has been done in designing methods to come up with efficient choices
for the value of ∆ [12]. In addition, some work has also been done in other related
fields (e.g., signal processing) in selective aggregation: i.e., aggregating spatiotem-
poral data in space to observe the temporal evolution, and vice versa. However, it is
undeniable that considering a two-dimensional (jointly in space and time) approach
for evolving interactions provide the exact representation of the dynamic nature of
real world networks. This is where the link stream formalism [8, 10] comes in.

Link stream theory (presented in detail in Chapter 2) is one of the few frame-
works which captures the dynamics of an interacting system by modeling interactions
between a set of nodes in such a way that each interaction is signed with a contin-
uous duration of time (e.g., node a and node b interact from time t1 to time t2), as
opposed to some other versions of dynamical networks which have been studied over
the last few years[7]. We considered this formalism as the fundamental framework
for this thesis due to its joint consideration of spatiotemporality.

Based on the link stream framework, the question we ask is: how to give accu-
rate mathematical description of spatiotemporal events and detectable communities
from an inferential as well as a compressional perspective.

The inferential perspective allows us to detect the evolution of macro-scale events
with time, e.g., detecting groups of friends in online social link streams, or, detect-
ing social events by looking into intra-office email link streams. Analogous work has
been done in the field of static networks in terms of community detection [5] and
modular decomposition [15].

The compressional perspective comes from the realization that real world dynam-
ical networks typically model millions, or even billions of interactions, and handling
them computationally is a challenge in itself. Hence it would be much better if we
can express smaller groups of nodes with similar functionality as singular supernodes
and aggregate interactions between different node groups as superlinks, then we can
achieve a much smaller representation for the same dataset [16].

This thesis work is an attempt to combine these two perspectives for dynamical
networks upon the link stream formalism. We have designed a mathematical frame-
work for spatiotemporal modular decomposition in link streams in a way that the
spatiotemporal modules (the set of which creates an exhaustive partition of the orig-
inal link stream) can be expressed as supernodes and intra-modular interactions can
be expressed as superlinks. These aggregate structures can be used to (1) compress
the original link stream in space and time, and, (2) give a macro-scale representation
of events in the original dataset.

One noteworthy feature of such a compression is that, the compressed link stream
gives a lossless representation of the original link stream. Hence, this framework
accurately captures micro-scale variations of the dataset . However, we also looked
at graph similarity based parameter relaxation to capture the macro-scale features
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Figure 1.1: The objective function and its relation to the compression
process

of the dataset at the cost of loosing the less significant micro-scale features (detailed
mathematical discussion in Chapter 3).

This aggregate representation gives us a (lossy) compressed version of the orig-
inal link stream. Now, it is quite useful to the data miner if he/she can minimize
this loss of information, without loosing the macro-scale features.

Hence we proposed an objective function which needs to be optimized to achieve
the most fruitful compression of the link stream. This objective function is proposed
as a trade-off between the divergence and the complexity of the compressed rep-
resentation (Figure 1.1). The divergence term quantifies the loss of information
between the original and the decompressed link stream, where the decompressed
link stream is achieved by removal (dis-aggregation) of the module boundaries to
represent all the nodes and temporal interactions between them. The divergence
term in our study has been proposed as the Kullback-Leibler (KL) divergence be-
tween the empirical weight distribution of the original and the decompressed link
stream. And the complexity term, also interpreted as the data miner’s ”resource”
constraint, is interpreted as the number of modules used to describe the compressed
link stream. Hence, we quantify complexity in our study as the cardinality of the
set of modules (detailed mathematical discussion in Chapter 4).
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1.2 Relevant Previous Work

THE FIELD OF dynamic graph compression is quite new within the growing field
of complex networks research. Recent and most relevant work on dynamic graph
theory have focused on dynamical community detection [17, 18] and clustering [19].
There has also been some work in graph compression in the static case [16, 20, 21]
and in the dynamic case [22 23] which gave us a good environment to base our
work upon; albeit not sufficient as these works were based on series of graph snap-
shots, whereas our intended framework incorporated continuous time description of
graphical interactions. That is why we based our work more on (1) state-of-the-art
methods for modular decomposition in case of static networks, and (2) for informa-
tion theoretic compression in static networks; and then we tried to combine these
two approaches and generalize for link streams to take care of the spatiotemporality.

The idea of strong and relaxed modular decomposition in the static case was
thoroughly discussed in 2007 by J. Reichardt and D. R. White [24], which in turn
was based on F. Lorrain and H.C. White’s seminal work on structural equivalence
in social networks [25] and Doreian et al.’s work on generalized blockmodeling [26].
In addition, the idea of information theoretic compression in static networks has
recently been dealt with in Lamarche-Perrin et al. [21]. Hence, these two papers
([21] and [24]), originating from static network research, formed the basis of our
work.

The chief portion of this thesis work involves the spatiotemporal generaliza-
tion of these two concepts (strong/relaxed modular decomposition and informa-
tion theoretic compression) for a link stream framework. In addition, we introduce
parametrized relaxation for modular decomposition which gives us additional control
over the information loss. Ultimately, we discuss (in Chapter 5) how to control
graph theoretical parameters to achieve optimal compression (min loss, max repre-
sentation) for a generic link stream (no real database considered) from an inferential
perspective.

1.3 Thesis Outline

CHAPTER 2 IN this thesis introduces the link stream framework in detail. First we
discuss the pre-existing structure, and then we discuss the new notations and defini-
tions we introduced to deal with our problem. The pre-existing link stream frame-
work describes unweighted links only. Hence following that we introduce weight
of interactions in a link stream. Subsequently we show that the empirical weight
distribution in a link stream follows a hybrid (discrete in space, continuous in time)
probability distribution. Chapter 3 introduces spatiotemporal modules in a link
stream and discusses strong and relaxed cases in detail. Chapter 4 explores the
compression and decompression problem in link streams. Chapter 5 proposes the
objective function to be optimized and explores its well-posedness for a generic link
stream.

∗ ∗ ∗
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CHAPTER2
Introduction To Link Streams

2.1 Context

INTERACTION DATA ARISING in different domains has traditionally been mod-
eled using a graph, i.e., a couple G = (V,E) where V is the set of nodes and
E ⊆ V × V is the set of links. A link (u, v) ∈ E means that the nodes u and v
interact with each other in the concerned model. As mentioned in Chapter 1, this
simplistic model generates a mathematical language which is used extensively to
study interaction models across all scientific, economic and sociological disciplines.
However, this model does take into account temporal signatures of individual inter-
actions. This is what the link stream formalism overcomes by generating a mathe-
matical language to study evolving interactions over time. This formalism has been
under rapid development for a few years now from a theoretical as well as an ap-
plied perspective. This chapter gives a complete introduction to the pre-existing
link stream framework, coupled with a new set of notations and definitions that we
devised to tackle the problem of spatiotemporal compression in a link stream. The
new notations and definitions introduced are embedded as text boxes.

2.2 Basic Structure

A LINK STREAM [8, 10] is a triple L = (T, V,E) where V = {v1, v2, · · · , vn} is a set
of nodes (|V | = n), T = [α, ω] is the time span of the stream, and E ⊆ {(b, e, vi, vj) ∈
T × T × V × V : b ≤ e} gives the set of temporal links in L (Figure 2.1a). Hence, a
link l = (b, e, vi, vj) is in E if the nodes vi and vj have continuously interacted from
time b to time e. A special case of a general link stream is an instantaneous link
stream: i.e., a link stream L = (T, V,E) such that for all (b, e, vi, vj) ∈ E, b = e
(Figure 2.1b).

The total number of nodes |V | = n is called the order of L, the total number of
links |E| = m is denoted as the size of L, and the range of T , i.e., ω − α gives the
duration of L, and is denoted by L̄. The duration of any link l = (b, e, vi, vj) ∈ E is
given as l̄ = e− b.

5



(a) An example of a general link stream. (b) An example of an instantaneous link
stream.

Figure 2.1: Two different examples of link streams. Both link streams
contain 8 nodes and 12 links, and are represented as L = (T, V,E) where
T = [1, 30] and V = {A,B,C,D,E, F,G,H}. In the general case, E =
{(3, 6, A,B), (3, 6, B,D), (6, 8, D, F ), ...} whereas, in the instantaneous case, E =
{(3, A,B), (3, B,D), (6, D, F ), ...}. Each node is represented as a dotted horizontal
line (node levels). Each link is represented by a line between two node levels cor-
responding to individual time stamps in the time axis (instantaneous case). The
horizontal lines in the middle of each link show the duration of each link.

In addition to the duration of a link, the duration of a time interval T ∗ = [α∗, ω∗] ⊆ T
is given by 〈T ∗〉 = max(T ∗) − min(T ∗) = ω∗ − α∗ We use this angular bracket
notation to denote the size of any continuous set in this thesis.

The link streams considered in our study are undirected : i.e., we make no dis-
tinction between the links (b, e, vi, vj) and (b, e, vj, vi). Moreover, the link streams
were considered to be simple: i.e., u 6= v and b ≤ e for all (b, e, vi, vj) ∈ E, and
[b, e] ∩ [b′, e′] = ∅ for all (b, e, vi, vj), (b

′, e′, vi, vj) ∈ E. For any vi, vj ∈ V and t ∈ T ,
we say that vi and vj interact in L at time t if there exists a link (b, e, vi, vj) ∈ E
such that t ∈ [b, e].

Given two link streams L = (T, V,E) and L′ = (T ′, V ′, E ′), we say that L′ is a
sub-stream of L if V ′ ⊆ V and T ′ ⊆ T and for all vi, vj ∈ V ′ and t ∈ T ′, if vi and vj
interact at time t in L′, then they also interact at time t in L. This is denoted by
the expression L′ ⊆ L, and L′ = L if and only if L′ ⊆ L and L ⊆ L′. Given two links
l = (b, e, vi, vj) and l′ = (b′, e′, v′i, v

′
j), we say that l′ is a sub-link of l if v′i = vi, v

′
j = vj

and [b′, e′] ⊆ [b, e]. It is noticeable that if L = (T, V,E) and L′ = (T ′, V ′, E ′) are
simple link streams, then L′ ⊆ L if and only if for all l′ ∈ E ′, there exists an l ∈ E
such that l′ ⊆ l. E.g., in Figure 2.1a, a link stream L′ = (T ′, V ′, E ′) where T = [0, 8],
V = {A,B,D} and E = {(3, 6, A,B), (3, 8, B,D)} is a sub-stream of L as T ′ ⊂ T ,
V ′ ⊂ V and E ′ ⊂ E. Similarly we can also find sub-streams in the instantaneous link
stream (Figure 2.1b) by taking spatiotemporal subsets of the original link stream.

A sub-stream of L induced by a set of nodes M ⊆ V and a time interval T ∗ ⊆ T is
given by L[(M,T ∗)] := (T ∗,M,E∗) where E∗ = {(b′, e′, vi, vj) ∈ T ∗× T ∗×M ×M :
b′ ≤ e′} ⊆ E.

6



2.3 Basic Statistical Measures

THIS SUB-SECTION INTRODUCES several statistical measures defined on a link
stream. As this is completely new concept and fundamental to our work, we are
going to define the measures while drawing analogies to equivalent measures in a
static graph [27]. In case of a static graph G = (V,E), density of G is the probability
that when one randomly selects two nodes u and v then there is a link (u, v) in E:

δ(G) =
2m

n(n− 1)
(2.1)

Where n = |V | denotes the number of nodes and m = |E| denotes the number
of links in G. Analogously in a link stream, the density δ(L) is defined as the
probability of finding an interaction while taking two random nodes u and v and a
random time instant t (i.e., there exists a link (b, e, u, v) ∈ E such that t ∈ [b, e]).
This density is only defined for link streams such that n ≥ 2 and ω > α.

δ(L) =
2
∑

l∈E l̄

n(n− 1)(ω − α)
(2.2)

In the example presented in Figure 2.1a, |V | = 8, ω − α = 30, and
∑

l∈E l̄ =
3 + 5 + 2 + ... = 34. Therefore,

δ(L) =
2 · 34

8(8− 1) · 30
=

68

1680
≈ 0.04.

The considered link stream is sparse, as the density is closer to 0.
We can notice from Figures 2.1a and 2.1b and that a link stream has a two-

dimensional representation. Hence it is interesting to see the area covered by a link
stream and a sub-stream, and the fractional area of a link stream covered by a sub-
stream.

The area of a link stream (T, V,E) is given by A(L) = |V |〈T 〉. Therefore, in case of
both the link streams depicted in figures 2.1a and 2.1b, A(L) = |V |〈T 〉 = 8·30 = 240.

Hence |V | = n and T = [α, ω] implies that A(L) = n(ω−α). Similarly, the area of a
sub-stream L(M,T ∗) (as defined in the previous section) is given by A(L(M,T ∗)) =
|M |〈T ∗〉. Therefore, the fractional area of L covered by L(M,T ∗) = L′ (say) is
defined as:

ĀL(L′) =
A(L′)

A(L)
∈ [0, 1]. (2.3)

This equation is valid under the assumption that A(L) 6= 0, which is only possible
if L is not a null link stream (i.e., L = (T, V,E) 6= (∅, ∅, ∅)). Therefore ĀL(L′) = 0
denotes that L′ is a null link stream, whereas, ĀL(L′) = 1 denotes L′ = L.

Going back to our previous example of sub-streams (Section 2.2), if we choose
L′ = (T ′, V ′, E ′) to be our sub-stream where T = [0, 8], V = {A,B,D} and E =
{(3, 6, A,B), (3, 8, B,D)}, then the area of the sub-stream L′ is A(L′) = 3 · 8 = 24,
therefore ĀL(L′) = 24/240 = 0.1.

In graph G, the neighborhood N(v) of a node v ∈ V is the set of nodes linked
to v: N(v) = {u ∈ V : ∃(u, v) ∈ E} and the degree of v is defined as d(v) = |N(v)|,

7



(a) Spatiotemporal neighborhood of nodes B and F in a general
link stream.

(b) Spatiotemporal neighborhood of nodes B and F in an instan-
taneous link stream.

Figure 2.2: Spatiotemporal neighborhoods in link streams. Here we choose
T ′ = [10, 17] ⊂ T . Hence in (a), NT ′(B) = {(A, t1)t1∈[12,15], (C, t2)t2∈[15,17]} and
NT ′(F ) = {(E, t3)t3∈[14,17]}. Whereas, in (b), NT ′(B) = {(A, 12), (C, 15)} and
NT ′(F ) = {(E, 14)}.

where |...| denotes the cardinality of any discrete neighborhood set. The average
degree of G is gives as d(G) = 1

n

∑
v∈V d(v). It can also be noticed that the following

relation between density (equation 2.1) and average degree holds: δ(G) = d(G)
n−1

.
Generalizing this idea in case of a link stream requires a bit more rigor as in-

dividual interactions in a link stream have spatial (nodes connected to) as well as
temporal (duration of each interaction) signatures.

The spatiotemporal neighborhood NT ∗(vi) of a node vi ∈ V within the interval
T ∗ ⊆ T , is defined as NT ∗(vi) = {(vj, t) : ∃(b, e, vi, vj) ∈ E, t ∈ [b, e] ∩ T ∗} (Figures
2.2a and 2.2b). Accordingly, the size of NT ∗(vi), or the degree of vi in T ∗ is defined
as:

dT ∗(vi) = |NT ∗(vi)| =
∑

(b,e,vi,vj)∈E

〈[b, e] ∩ T ∗〉
〈T ∗〉

(2.4)
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As we choose a subset of T as the considered time interval while defining NT ∗(vi),
we can also restrict this definition spatially to denote that we only choose to inquire
about the nodes linked to vi ∈ M ⊆ V over T ∗ outside M : NM

T ∗(vi) = {(vj, t) ∈
NT ∗(vi) : vi ∈ V \M}. Therefore the size of NM

T ∗(vi) is defined as:

|NM
T ∗(vi)| =

∑
(b,e,vi,vj)∈E
vj∈V \M

〈[b, e] ∩ T ∗〉
〈T ∗〉

(2.5)

Considering a single time instant t instead of an interval T ∗ reduces the spa-
tiotemporal neighborhood framework to a spatial (discrete) framework, returning
the set of nodes linked to vi at a time instant t ∈ T : Nt(vi) = {vj ∈ V :
∃(b, e, vi, vj) ∈ E, t ∈ [b, e]}. Correspondingly, the degree of vi at time t is the
size of Nt(vi), i.e., dt(vi) = |Nt(vi)|. By extension, the degree of vi in L is defined
as:

dT (vi) ≡ d(vi) := |
⋃
t∈T

Nt(vi)| =
∑

(b,e,vi,vj)∈E

e− b
ω − α

=
∑
l∈L(vi)

l̄

ω − α
. (2.6)

where L(vi) gives the sub-stream of L induced by vi, i.e., part of the original
link stream L only containing links from vi to other nodes in V (i.e., in V \{vi}).
Therefore the average degree in L is defined as:

d(L) =
1

n

∑
vi∈V

d(vi). (2.7)

Just like simple graphs, there exists the following relation between the density
(equation 2.2) and average degree in L:

δ(L) =
2
∑

l∈E l̄

n(n− 1)(ω − α)
=

2
∑

l∈E
l̄

ω−α

n(n− 1)

=
21

2

∑
v∈V

∑
l∈L(v)

l̄
ω−α

n(n− 1)

=

∑
v∈V d(v)

n(n− 1)

=
d(L)

n− 1
.

2.4 Neighborhood Similarity

IN A SIMPLE graph G, two nodes u and v are said to have similar neighborhoods if
N(u) = N(v). This is a binary measure which returns 1 only if all the neighbors of u
in G are also neighbors of v, and 0 otherwise. However, if we want to understand the
degree of neighborhood similarity of u and v, i.e., approximate (fractional) similarity
of the neighborhoods of u and v based on the number of common neighbors, we would
need to use the Jaccard similarity index [28], which is defined for any two sets A,B
as:

J(A,B) =
|A ∩B|
|A ∪B|

∈ [0, 1] (2.8)
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Figure 2.3: Spatiotemporal neighborhood similarity in a link stream. Here
we show the neighborhood similarity of nodes F and H over the interval [3, 8], nodes
A and C over [12, 15], and nodes G and H over [22, 30].

Therefore, the neighborhood similarity for u and v is given as J(N(u), N(v)).
Correspondingly, if we want to measure the similarity of neighborhoods of u and v
outside a given subset of nodes M , then we evaluate J(N(u)\M,N(v)\M). This
index works well for discrete sets when the cardinality expression |...| is taken as
the cardinality of discrete sets (as taken conventionally), but fails to capture sim-
ilarity of continuous intervals. Hence even though We use the Jaccard similarity
to calculate the similarity between node neighborhoods, we consider the expression
|...| defined as in equation 2.4 and 2.5 for spatiotemporal neighborhood sets and
restricted neighborhood sets in L.

The spatiotemporal neighborhood similarity between two nodes vi and vj over a
time interval T ∗ ⊆ T in L is defined by the measure εT ∗ : V × V → [0, 1] as:

εT ∗(vi, vj) = J(NT ∗(vi), NT ∗(vj)) =

∑
(b,e,u,vi)∈E∩(b,e,u,vj)∈E〈[b, e] ∩ T ∗〉∑
(b,e,u,vi)∈E∪(b,e,u,vj)∈E〈[b, e] ∩ T ∗〉

(2.9)

By extension, the restricted similarity between two nodes vi, vj ∈ M ⊆ V over T ∗

is defined by the measure εMT ∗ : M ×M → [0, 1] as:

εMT ∗(vi, vj) = J(NM
T ∗(vi), N

M
T ∗(vj)). (2.10)

Let us now calculate the neighborhood similarity of nodes in the link stream
depicted in Figure 2.3 corresponding to several time intervals. Let, T ∗1 = [3, 8],
T ∗2 = [12, 15] and T ∗3 = [22, 30]. Nodes F and H both interact with node D in T ∗1 ,
but the duration of their interactions do not intersect. Therefore:

εT ∗1 (F,H) =
0

〈[3, 6] ∩ T ∗1 〉+ 〈[6, 8] ∩ T ∗1 〉
= 0.

10



Similarly for the nodes A and C over T ∗2 :

εT ∗2 (A,C) =
〈[12, 15] ∩ T ∗2 〉+ 〈[12, 15] ∩ T ∗2 〉
〈[12, 15] ∩ T ∗2 〉+ 〈[12, 15] ∩ T ∗2 〉

= 1.

and for nodes G and H over T ∗3 :

εT ∗3 (G,H) =
〈[25, 28] ∩ T ∗3 〉

〈[22, 30] ∩ T ∗3 〉+ 〈[25, 28] ∩ T ∗3 〉
=

〈[25, 28]〉
〈[22, 30]〉+ 〈[25, 28]〉

=
3

11
≈ 0.27.

Calculations for εMT ∗(·, ·) follows accordingly.

2.5 Conclusion

IN THIS CHAPTER we have introduced the link stream framework, coupled with
some new notations and definitions that we have generated to deal with the prob-
lem of spatiotemporal compression in dynamical networks. In the next chapter, we
are going to introduce the idea of spatiotemporal aggregates or modules using the
presented framework, which we are going use eventually to address our research
problem.

∗ ∗ ∗

11



CHAPTER3
Modules In Link Streams

3.1 Context

BEFORE DEFINING MODULES in link streams, it is good to have a look at where
the idea of spatiotemporal modules come from. As we discussed before in Chapter
1 Section 1.2, the idea of modular decomposition in static graphs was discussed in
detail by Reichardt & White [24]. In their work, they mentioned that two nodes are
structurally equivalent if they have the exact same neighbors, and they are regularly
equivalent if they are connected in the same way as to equivalent others (Figure 3.1).
A structural equivalence module in a graph would be a set of nodes which have the
exact same neighbors outside the module.

We initially extended this idea to link streams, by saying that a module in a link
stream L (as defined in Chapter 2) is a couple (M,T ∗), where M ⊆ V is some
subset of nodes and T ∗ ⊆ T is a time interval such that the nodes in M have the
exact same neighbors over T ∗ (Figure 3.2). Then, we refined this idea from two
different perspectives to make our framework stronger:

(1) The considered modules are strong by construction, i.e, two nodes need to
have the exact same neighbors (both spatially and temporally) outside the module
to satisfy the above mentioned idea. We relaxed this stringent criterion by say-
ing that nodes in a module should have approximately similar neighbors to be in
a module. Therefore, based on this idea alone, the definition of a module is given as:

Definition 1. (ε-Relaxed Modules) Given a subset of nodes M ⊆ V , a finite
time interval T ∗ ⊆ T and a precision parameter ε ∈ [0, 1], the couple (M,T ∗) is
called an ε-relaxed module, if εMT ∗(vi, vj) ≥ ε for all vi, vj ∈M . (εMT ∗ defined as in eq
2.10)

Therefore, an ε-relaxed module is strong one when ε = 1, i.e., εMT ∗(vi, vj) =
1, ∀ vi, vj ∈ M . In other words, the strength of a module increases as we slide the
precision parameter ε closer to 1.

One trivial case of an ε-relaxed module is the original link stream L itself. All
the nodes in V have zero neighbors outside L, hence they all have similar (trivial)

12



Figure 3.1: Structural and regular equivalence in a simple graph. Nodes
a and b have the exact same neighbors (c, d, e), hence they form a structural
equivalence class. Whereas, node groups (c, d, e) and (f, g) form two separate
regular equivalence classes. The figure on the right gives the mirror representation
of the graph in terms of the structural and regular equivalence classes as singular
nodes.

Figure 3.2: Module formation in a link stream. Similarity in in-
teraction generates 6 modules of the form (M,T ∗) in this link stream:
({A,D}, [3, 6]), ({B,C}, [3, 6]), ({A,C}, [9, 11]), ({B}, [9, 11]), ({A,E}, [14, 19]) and
({B}, [14, 19]). We can also notice some modules with zero interactions, e.g.,
({A,B,C,D,E}, [0, 3]), ({A,B,C,D,E}, [7, 9]), ({E}, [0, 13]), ({C}, [11, 19]) etc.
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neighborhood structures with ε = 1. Therefore, the original link stream L is a 1-
relaxed module. We can also say that for any M ⊆ V and T ∗ ⊆ T , the couple
(M,T ∗) in L is a (trivial) 1-relaxed module.

(2) In addition to considering approximate neighborhood similarity, it might
also be interesting to see if the modules in our link stream are internally sparse
(i.e., nodes loosely interact within) or dense (i.e., nodes highly interact within). We
might also have interesting modules which are neither internally sparse nor dense,
but rather form interaction structures which correspond to meaningful motifs with
respect to the data set under investigation. Hence, Definition 1 is refined accord-
ingly to incorporate the idea of internal structure in the following manner:

Definition 2. (ε, η-Relaxed Module) An ε-relaxed module (M,T ∗) is an ε, η-
relaxed module in L, given another precision parameter η ∈ [0, 1/2] if (M,T ∗)
generates a sub-stream L(M,T ∗) ⊆ L such that either (C1) δ[L(M,T ∗)] < η or
(C2) δ[L(M,T ∗)] > 1− η.

If C1 is satisfied, then (M,T ∗) is a sparse module, whereas if C2 is satisfied, then
it is a dense module.

Notice that the idea of having either a sparse or a dense module is directly linked
to the chosen value of η, i.e., sparsity/density of a module increases as we slide η
closer to 0, and decreases otherwise.

Going back to our previous examples of trivial modules, we can say that L forms
a 1, η-relaxed module where η = δ(L). Whereas, every couple ({v}, [t, t]) in L for
all v ∈ V and t ∈ T forms a 1, 0-relaxed module.

Therefore, considering the two above-mentioned perspectives, we can not only
make the module framework well-defined, but in addition we can see that the re-
laxation parameters ε and η serve as control parameters for module strength, which
in turn relates significantly to our objective of achieving an optimal link stream
compression. I will discuss this inter-dependence in detail in the following chapters,
especially in Chapter 5, but for now we need to define some additional properties
of modules in our link stream to proceed with our approach to solve the problem of
modular decomposition and compression in link streams.

3.2 Module Characterization

AS WE CAN see in Figure (3.3), a module in a link stream has a rectangular
(two-dimensional) presentation. It is important for us to have some idea about the
physical attributes of a modules, i.e., neighborhood/internal interaction strength of
a module, area covered by a module etc., in order to be able to perform comparative
analyses. Therefore, in this section, we are going to define several properties of the
above described module architecture which will be useful for comparative analyses.

14



Definition 3. (Strength of a Module) The strength of an ε, η-relaxed module
(M,T ∗) is given by the couple S(M,T ∗) which is defined as:

S(M,T ∗) = (ε(M,T ∗), η(M,T ∗)) (3.1)

where ε(M,T ∗) is the neighborhood strength of (M,T ∗), that is the minimum pairwise
restricted neighborhood similarity for all pairs of nodes vi, vj ∈M , i.e.,

ε(M,T ∗) = min
vi,vj∈M

εMT ∗(vi, vj) (3.2)

And, η(M,T ∗) is the internal linkage strength of (M,T ∗), that is the density of the
module induced sub-stream:

η(M,T ∗) = δ[L(M,T ∗)]. (3.3)

It is noticeable that for all vi, vj ∈ M , εMT ∗(vi, vj) ≤ ε as (M,T ∗) is already de-
fined as an ε, η-relaxed module. Still, we take the minimum of εMT ∗(vi, vj) as ε(M,T ∗)
instead of taking ε directly, as the minimum restricted neighborhood similarity mea-
sure can vary for different modules corresponding to a fixed ε. But this sort of a
specificity is not required for the internal linkage density as η(M,T ∗) considers all
nodes and time instances in the module at the same time. Definition 3 gives us a
proper framework to finally define strong modules in a link stream, analogous to
the structurally equivalent modules in a static graph.

Definition 4. (Strong Modules) An ε, η-relaxed module (M,T ∗) is called a
strong module if either S(M,T ∗) = (1, 0) (sparse strong module) or S(M,T ∗) =
(1, 1) (dense strong module).

In case of real world link streams, the idea of having a strong/relaxed spatiotem-
poral module relates to strong/relaxed spatiotemporal communities. For example,
two (strong or relaxed) modules (M,T ∗1 ) and (M,T ∗2 ) formed over the same set of
nodes M ⊆ V but different time intervals (i.e., T ∗1 ∩ T ∗2 = ∅) translates to the
observation that the nodes in M have similar interaction behavior over T ∗1 and T ∗2 .
This indicates the temporal significance of the node set M in terms of community
formation. Similarly, two modules (M1, T

∗) and (M2, T
∗) formed over two different

sets of nodes M1 and M2 (i.e., M1 ∩M2 = ∅) but on the same time interval T ∗

denotes that two different sets of nodes have similar interaction signatures over the
same time interval. This indicates the significance of the time interval T ∗ in terms of
multiple spatial events (Figure 3.3). Moreover, the above defined parameter S(·, ·)
describes the internal as well as neighborhood strength of the modules.

It would be interesting if we can compare the size of these constrained modules
to determine the scale of macroscopic patterns in our link stream. For example,
in case of modules (M,T ∗1 ) and (M,T ∗2 ), the larger module is the one with larger
temporal span, i.e., 〈T ∗1 〉 ≥ 〈T ∗2 〉 would indicate that (M,T ∗1 ) is larger than (M,T ∗2 ).
Similarly, in case of the modules (M1, T

∗) and (M2, T
∗), |M1| ≤ |M2| would indicate

that (M1, T
∗) is smaller than (M2, T

∗). We formalize this idea by extending the no-
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Figure 3.3: Module representation in a link stream. Notice that nodes E and
F show spatial significance, whereas, time interval [5, 10] shows temporal significance
in terms of module formation.

tion of a fractional area of a link stream covered by a sub-stream (equation 2.3) in
order to define the normalized area of a module, which returns a ratio between 0
and 1 denoting the area of the link stream covered by the module. This equivalence
is made possible due to the observation that any module (or any pair of a node set
and a time interval) generates a sub-stream in L. Therefore we can essentially use
the same notation to describe the normalized area covered by a module as we do in
case of a sub-stream.

Definition 5. (Normalized Area of a Module) The normalized area of an
ε, η-relaxed module (M,T ∗) is denoted by the expression ĀL(M,T ∗) which gives the
normalized area of the sub-stream generated by (M,T ∗):

ĀL(M,T ∗) =
|M |
|V |
〈T ∗〉
〈T 〉

(3.4)

Hence going back to the previous two examples, in case of (M,T ∗1 ) and (M,T ∗2 ),
〈T ∗1 〉 ≥ 〈T ∗2 〉 ⇒ ĀL(M,T ∗1 ) ≥ ĀL(M,T ∗2 ). And in case of (M1, T

∗) and (M2, T
∗),

|M1| ≤ |M2| ⇒ ĀL(M1, T
∗) ≤ ĀL(M2, T

∗).

Therefore, the two functions S(M,T ∗) and ĀL(M,T ∗) characterize the strength
and the area of a module.

3.3 Module Maximality

OUR OBJECTIVE BEHIND modular decomposition is to transform the modules
into singular aggregate instances in the image link stream (compression process; as
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will be discussed in detail in the next chapter). But intuitively, we can understand
that the compression process becomes much more meaningful if the minimal num-
ber of modules are used to express the whole link stream (complexity; discussed in
Chapter 1 Section 1.1). Therefore it is relevant for us to define maximal mod-
ules, i.e., modules which are not included in any other module subject to spatial
and temporal constraints. This expression helps us in obtaining a partition (not
necessarily unique) of a given link stream in terms of maximal modules. By design,
these maximal modules have the maximal normalized area among all modules while
preserving the strength. First, we will distinguish between structural and tempo-
ral maximality, and then we will see that joint spatiotemporal maximality follows
subsequently.

Definition 6. Structural Maximality Given M ⊆ V , (ε, η) ∈ [0, 1] × [0, 1/2]
and for any T ∗ ⊆ T , the couple (M,T ∗) is an ε, η-relaxed T ∗-structurally maximal
module if S(M,T ∗) ≥ (ε, η) and there does not exist any set of nodes M ′ ⊃M∗ such
that S(M ′, T ∗) ≥ (ε, η).

Definition 7. (Temporal Maximality) Given T ∗ ⊆ T , (ε, η) ∈ [0, 1] × [0, 1/2]
and for any M ⊆ V , the couple (M,T ∗) is an ε, η-relaxed M-temporally maximal
module if S(M,T ∗) ≥ (ε, η) and there does not exist any time interval T ′∗ ⊃ T ∗ such
that S(M,T ′∗) ≥ (ε, η).

Combining the idea of spatial and temporal maximality, we can define an ε, η-
relaxed spatiotemporally maximal module as a couple (M,T ∗) which satisfies both
the criterion stated in definitions 6 and 7.

3.4 Conclusion

IN THIS CHAPTER, we have introduced spatiotemporal modules in link streams,
and discussed several structural properties of the modules. The theory of spatiotem-
poral modules establishes the basic framework upon which we subsequently deal with
the problem of link stream compression. In the next chapter, we are going to dis-
cuss how we can use these modules to compress a link stream into an image link
stream, which retains the macro-scale features of the original dataset constrained to
an optimizable amount of information loss.

∗ ∗ ∗
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CHAPTER4
Spatiotemporal Compression in

Link Streams

4.1 Context

AS WE DISCUSSED in the previous chapter, we wish to compress a given link
stream into a smaller image link stream which retains the macro-scale features of
the original dataset. This objective has recently been applied to static graphs [21].
This chapter generalizes such a compression scheme into a spatiotemporal frame-
work, to be applied to link streams. Graph compression (static or dynamic) is said
to be lossless if no information about the original dataset is lost in the compres-
sion process, i.e., we find back the exact structure of the original graph when we
decompress the compressed version (Figure 4.1).

However, as discussed in Chapter 1, such compression becomes more meaning-
ful for real networks if the modules are less rigid in including nodes with approx-
imately same neighborhood structures. This gives rise to a better understanding
of community formation in the original dataset, even though we do not obtain the
exact structure of the original graph when we decompress the (lossy) compressed
representation (Figure 4.2).

Hence, the first order of business is to define a spatiotemporal generalization of
lossy graph compression for link streams using modules (which we do in this chap-
ter), and then to discuss how we can minimize this loss of information to maintain
the macro-scale features (discussed in the next chapter).

As we can notice in Figure 4.2, lossy compression/decompression in a graph
changes the weight of interaction for several links. In a graph G = (V,E), the
weight of interaction between two nodes vi and vj is defined by the function wG :
V × V → R+. Subsequently, the empirical distribution is defined as [21]:

pG(vi, vj) =
wG(vi, vj)∑

(v′i,v
′
j)∈E wG(v′i, v

′
j)
.

The decompression process conserves the total weight of interaction in the graph,
while changing the empirical weight distribution of the decompressed graph, which
is then compared to pG(vi, vj) to quantify the amount of information loss.
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Figure 4.1: Modular compression and decompression in a simple static
graph. First we identify modules, or groups of nodes with similar interaction be-
havior in the graph on the left. We obtain two different kinds of modules (as shown
in the middle figure): the diamond shaped node ({a, b, c, d}) is a sparse module,
i.e., none of the nodes within interact with each other, and the square shaped nodes
({g, f, h, i} and {j, k, l}) are dense modules (as indicated by the self-loop). Such a
decomposition reduces the original graph structure of 14 nodes and 18 links to a
compressed version having 6 nodes and 7 links (the figure in the middle). Subse-
quently we dis-aggregate the module boundaries to obtain the decompressed graph,
which matches exactly with the original graph.

Figure 4.2: Lossy compression and decompression in a simple static graph.
On the left hand side, we have a static graph with a missing link (as shown by the
dotted red line). The figure in the middle gives the aggregated representation of
the original graph. The decompression process compensates for this missing link
by assigning weight to each intra-modular link equal to the ratio of the number of
links present between the two modules {a, b} and {c, d, e} (5) and total number of
possible links between these two modules (3× 2 = 6).
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To be able to do that in our case, first we need to have an idea about the weight
of (spatiotemporal) interactions in a link stream so that we can define the empirical
weight distribution in a link stream. That is what the next section introduces, based
upon the general structure of link streams defined in Chapter 2.

4.2 Weight of Link Stream Interactions

IN A LINK STREAM L, the weight of interaction between two nodes u and v in V , at
a time instance t ∈ T is equal to 1 if there exists a link between u and v at time t, and
0 otherwise. That means, for a fixed t, the weight function w : T × V × V → {0, 1}
is defined as:

w(t, vi, vj) =

{
1, if ∃ (b, e, vi, vj) ∈ E such that t ∈ [b, e]

0, otherwise
(4.1)

In addition, w(t, vi, vi) = 0 ∀ vi ∈ V and ∀ t ∈ T as we do not allow any self-loop
in the link stream.

The aggregated weight of interaction between vi and vj over a time interval
T ∗ = [b∗, e∗] ⊆ T is given by:

w(T ∗, vi, vj) =

∫
t∈T ∗

w(t, vi, vj) dt. (4.2)

Then, the aggregated weight of interaction between two sets of nodes V1 and V2

over the time interval T ∗ is given by:

w(T ∗, V1, V2) =
∑

vi,vj∈V1×V2

w(T ∗, vi, vj). (4.3)

We notice that this equation can be applied to the whole link stream by taking
T ∗ = T and both V1, V2 = V ; i.e., w(T, V, V ) gives the total weight of interac-
tion in the link stream. Now, as we only considered a binary function to define
the weight of interaction in our link stream (equation 4.1), w(T, V, V ) counts the
number of links present in L and assigns a value of 1 to each of the links at each
instance of time. In other words, w(T, V, V ) returns the sum of all link durations,
i.e., w(T, V, V ) =

∑
l∈E l̄.

Then we define the empirical weight distribution for a link stream as:

f(t, vi, vj) =
w(t, vi, vj)

w(T, V, V )
. (4.4)

The following equation intuitively shows how the density δ(L) of L is related to
the empirical distribution f(t, vi, vj):
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δ(L) =
2
∑

l∈E l̄

|V |(|V | − 1)〈T 〉
=

2 · w(T, V, V )

|V |(|V | − 1)〈T 〉
=

2 · w(t, vi, vj)

|V |(|V | − 1)〈T 〉f(t, vi, vj)

or, ∀t ∈ T, vi, vj ∈ V, f(t, vi, vj) · δ(L) =
2 · w(t, vi, vj)

|V |(|V | − 1)〈T 〉
. (4.5)

The structure of equation 4.4 tells us that we can also define the empirical weight
distribution for aggregates, i.e., f(T ∗,M,M) for all T ∗ ⊆ T and M ⊆ V as:

f(T ∗,M,M) =
w(T ∗,M,M)

w(T, V, V )
.

In addition, let us say that the couple (M,T ∗) generates an induced sub-stream
L[(M,T ∗)] = (T ∗,M,E ′). Then the following relation holds between the density of
the sub-stream δ(L[(M,T ∗)]) and f(T ∗,M,M):

δ(L[(M,T ∗)]) =
2
∑

l∈E′ l̄

|M |(|M | − 1)〈T ∗〉

=
2 · w(T ∗,M,M)

|M |(|M | − 1)〈T ∗〉

=
2 · f(T ∗,M,M) · w(T, V, V )

|M |(|M | − 1)〈T ∗〉

⇒ δ(L[(M,T ∗)])

f(T ∗,M,M)
=

2 · w(T, V, V )

|M |(|M | − 1)〈T ∗〉
.

Theorem 1. For all vi, vj ∈ V and t ∈ T , f(t, vi, vj) ≥ 0 and∑
vi,vj∈V×V

∫
t∈T

f(t, vi, vj) dt = 1. (4.6)

Proof. Positivity of f(t, vi, vj) follows directly from construction, as negative link
weights are not allowed in our formalism. And,

∑
vi,vj∈V×V

∫
t∈T

f(t, vi, vj) dt =
∑

vi,vj∈V×V

∫
t∈T

w(t, vi, vj)

w(T, V, V )
dt

=
∑

vi,vj∈V×V

1

w(T, V, V )

∫
t∈T

w(t, vi, vj) dt

=
∑

vi,vj∈V×V

w(T, vi, vj)

w(T, V, V )

=
1

w(T, V, V )

∑
vi,vj∈V×V

w(T, vi, vj)

=
w(T, V, V )

w(T, V, V )
= 1.
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4.3 Link Stream Compression

COMPRESSION OF A link stream L = (T, V,E) is achieved by expressing L in
terms of spatiotemporal aggregates and interactions within the aggregates (keeping
T fixed), instead of nodes and their interactions. As we discussed in the previous
chapter, a link stream can be completely decomposed into a countable number of
spatiotemporal modules (strong or relaxed). Among all the possible modules that
we can detect in L w.r.t. fixed values of ε ∈ [0, 1] and η ∈ [0, 1/2], we choose a
family of modules P = {(Mi, T

∗
i )}mi=1, m ∈ N, to perform the compression, such that

the modules are pairwise disjoint,
⋃m
i=1(Mi, T

∗
i ) = (V, T ) and there does not exist

any m′ ∈ N such that m′ < m and
⋃m′

i=1(Mi, T
∗
i ) = (V, T ); i.e., no subsequence of

modules included in P which forms an exhaustive partition of L. It is noticeable that
w.r.t. fixed ε and η, P is not a unique collection of modules; there can be several
such partitions that we can choose for compression as long as the chosen partition
satisfies the above mentioned conditions.

Given a partition P, we then define the compressed link stream LC as follows:

LC = (T, V C , EC) where V C = {Mi : (Mi, T
∗
i ) ∈ P} is the set of supernodes and

EC ⊆ T × T × V C × V C is the set of superlinks.

A superlink lC = (bC , eC ,Mi,Mj) ∈ EC iff ∃ modules (Mi, T
∗
i ), (Mj, T

∗
j ) ∈ P such

that bC = min(T ∗i ∩ T ∗j ) and eC = max(T ∗i ∩ T ∗j ); i.e., the supernodes Mi and Mj

interact in LC from time min(T ∗i ∩ T ∗j ) to max(T ∗i ∩ T ∗j ) if modules (Mi, T
∗
i ) and

(Mj, T
∗
j ) exist in P.

We see that the weight of interaction between two supernodes Mi and Mj over the
interval of their interaction [bC , eC ] = T ∗i ∩ T ∗i is the aggregate weight of interaction
in the original link stream, as defined in the previous section (Equation 4.3), i.e.,
w(T ∗i ∩ T ∗i ,Mi,Mj).

4.4 Link Stream Decompression

AS WE MENTIONED briefly in Chapter 1, the decompression of a link stream is
achieved by dis-aggregating the spatiotemporal modules to represent all nodes and
temporal interactions between them. Therefore, the decompressed link stream LD

has the same physical structure as L, i.e., both L and LD are defined upon the
same time interval T , set of nodes V and (approximately) the same set of links E.
However, the only thing that changes is the weight of interactions in LD. This can
be observed by noting that in LC , w(T ∗i ∩ T ∗i ,Mi,Mj) represents the compressed
weight of interaction between two sets of nodes Mi and Mj over the time interval
T ∗i ∩T ∗i . Therefore, decompressing this weight function gives us the weight of inter-
action between two nodes vi ∈Mi and vj ∈Mj at any time t ∈ T ∗i ∩ T ∗i . Hence, the
weight of interaction in LD is the function wD : T×V ×V → R+ is defined as follows:
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For all (Mi, T
∗
i ), (Mj, T

∗
j ) ∈ P,

wD(t, vi, vj) =


w(T ∗i ∩ T ∗i ,Mi,Mj)

|Mi| · |Mj| · 〈T ∗i ∩ T ∗i 〉
if Mi 6= Mj.

2 · w(T ∗i ∩ T ∗i ,Mi,Mj)

|Mi| · (|Mj| − 1) · 〈T ∗i ∩ T ∗i 〉
if Mi = Mj.

(4.7)

This allows us to define the empirical weight distribution of LD as:

fD(t, vi, vj) =
wD(t, vi, vj)

w(T, V, V )
(4.8)

4.5 Conclusion

THIS CHAPTER INTRODUCES spatiotemporal compression in a link stream us-
ing modules that we defined in the previous chapter. The compressed link stream
LC reveals the macro-scale properties of L by presenting interactions between mod-
ules or communities in it. We have defined the weight of interaction in a link stream
L, which allowed us to formulate the empirical weight distribution f(t, vi, vj) of L.
Subsequently we show how we can decompress a compressed link stream to com-
pute the new empirical weight distribution fD(t, vi, vj). It is noticeable that as the
modules considered were ε, η-relaxed, fD(t, vi, vj) is not equal to f(t, vi, vj) unless
ε = 1 and η = 0. In the next chapter, we are going to discuss how do we calculate
the deviation of fD from f in terms of the Kullback-Leibler (KL) divergence, and
subsequently we will discuss how can we optimize the divergence, without loosing
much of the macroscopic features presented in LC .

∗ ∗ ∗
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CHAPTER5
Modular Optimization Problem

5.1 Context

FOLLOWING THE RELAXED modular decomposition and subsequent compres-
sion of a link stream, we analyze if it serves the purpose of unveiling the macro-scale
features (in terms of modules) in the spatiotemporal dataset, without loosing too
much of micro-scale variations. However, as we discussed in the previous chapter,
relaxed decomposition (and subsequent compression) of a link stream using spa-
tiotemporal modules cannot be achieved uniquely, but rather there can be several
ways to compress a link stream using several partition classes of relaxed modules.
Therefore, it is important for us to quantitatively compare the original and the de-
compressed link stream w.r.t. a chosen module partition, so that we can decide
which partition serves our purpose of a meaningful spatiotemporal compression.

5.2 The Building Blocks

AS WE HAVE briefly explained in Chapter 1, we formalize the modular opti-
mization problem as a trade-off between the divergence and the complexity of the
compressed link stream. This chapter explains in detail these components of the
optimization problem, and then proposes an objective function which needs to be
optimized to achieve the best possible compression of a link stream.

5.2.1 Divergence

IN AN ANALOGOUS work on static graph compression by Lamarche-Perrin et al
[21], the divergence was modeled as the Kullback-Leibler (KL) divergence between
the empirical weight distributions of the original and the decompressed graph, where
the KL divergence between two discrete probability distributions p and q defined
over the same measurable space (Ω, σ(Ω)) (Ω: domain, σ(Ω): sigma algebra over Ω)
is defined as:

D(p || q) =
∑
x∈Ω

p(x)log2
p(x)

q(x)
. (5.1)
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and the sum is replaced by an integral when p and q are continuous probability
distributions. D(p || q) measures the difference between the distributions, where
typically p stands for the true distribution of data, whereas q represents a model or
an approximation upon the data [29].

We use this model to find the divergence between the empirical weight distri-
bution f of the original link stream L and the approximate distribution fD of the
decompressed link stream LD (both defined in the previous chapter), given its ef-
ficiency in measuring the difference between a given and a construed probability
distribution (in our case, the empirical weight distribution). Therefore, the diver-
gence term in our study is D(f || fD). It is noticeable that D(f || fD) attains
its minimum possible value 0 when f = fD, i.e., when L and LD have the same
empirical distributions. Similarly, D(f || fD) attains high values when f and fD

are very different from each other.

5.2.2 Complexity

THERE CAN BE several characterizations of complexity based on the field of study.
But in general, complexity is defined as the ”resource constraint” of a data miner,
i.e., how much resource the data miner needs to answer a specific question about a
dataset in hand. We interpret complexity in our study as the number of spatiotem-
poral relaxed modules required to compress the link stream. Hence, the complexity
term in our study is defined as the cardinality of the partition P, i.e., |P| as it returns
the exact number of modules required to compress a link stream.

It is noticeable that while compressing the link stream L = (T, V,E), the mini-
mum attainable complexity is |P| = 1, i.e., the only module considered is L itself;
and the maximum attainable complexity is infinity which occurs when every couple
({v}, t) is a module in L.

5.3 Proposing The Optimization Problem

NOW THAT WE have defined the divergence and complexity of our compressed
link stream, we are in a position to define the objective function that needs to be
minimized to achieve optimal compression. We need to keep in mind that complexity
is high when we have high number of small modules, which leads to a low divergence
as smaller modules approximate micro-scale interactions more appropriately (low
D(f || fD), high |P|). Contrariwise, complexity is low when we have a low number of
modules, which leads to a high divergence as the bigger modules neglect micro-scale
variations to reveal macro-scale patterns (high D(f || fD), low |P|). Therefore, the
desired (primal) optimization problem is read as:

minimize
P

D(f || fD)

subject to |P| ≤ c, c ∈ N.
(5.2)

Subsequently, the dual problem is proposed as:

minimize
P

|P|

subject to D(f || fD) ≤ d, d ∈ R+.
(5.3)
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Therefore, solving the primal or the dual optimization problem returns the best
compression scheme for a link stream which reveals the macro-scale spatiotemporal
modules present in the dataset (in terms of relaxed modules) with minimal possible
loss of micro-scale variations.

5.4 Conclusion

THIS CHAPTER INTRODUCES an objective function as a trade-off between the
divergence and complexity of the compressed link stream, and converts the module
decomposition problem into a module optimization problem. This marks the con-
clusion of the theoretical framework we developed to address the problem of lossy
spatiotemporal compression in a link stream. In the next chapter we discuss some of
the limitations of our work and suggest possible future extensions to this framework.

∗ ∗ ∗
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CHAPTER6
Final Remarks & Perspectives

IN THIS THESIS work, we have introduced a mathematical framework for an op-
timal spatiotemporal modular decomposition based link stream compression. This
chapter summarizes the main takeaways from this report, and discusses possible
future extensions to our work. Altogether, this is a purely mathematical work and
no datasets were considered to test our theory.

Chapter 2 in this thesis introduces the link stream framework: existing theory
and some extensions required to approach the modular decomposition problem.

In Chapter 3, we use this framework to define spatiotemporal modules (strong
& relaxed) in a link stream, and discuss several properties.

In Chapter 4, we discuss how we can use the module framework to compress a link
stream L into a compressed image link stream LC , which reveals the macroscopic
modular nature of the original structure. We also discuss how we can embed a
constant weight distribution to the links in L, which helps us determine the aggregate
weight of interactions in LC , and subsequently construct a decompressed version of
the LC , defined by LD.

Chapter 5 discusses how we can convert this data mining problem into an opti-
mization problem, where we propose our objective as a trade-off between the diver-
gence and the complexity of the system.

One primary goal of our work is to design and develop an algorithm for spa-
tiotemporal compression in link streams. This could happen from two different
perspectives:

1. Constructing a greedy approach to mine the spatiotemporal modules in a link
stream to construct the desired partition P, with respect to the optimization
parameters (divergence and complexity).

2. Constructing a Monte-Carlo approach to find random partitions which mini-
mizes the objective function in the proposed modular optimization problem.

It is also important to work on the structural relation between spatiotemporal
modules and spatiotemporal cliques [27], so that existing algorithmic approaches for
cliques can be modified to mine modules in a link stream.
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It is of utmost importance to see if we can give a form for optimal modular parti-
tion in a link stream with respect to fixed values of the defined precision parameters
ε and η, and the variation of the optimal partition with respect to controlled vari-
ation of the precision parameters. This might lead us to an optimal choice for the
precision parameters with respect to the dataset in consideration. It would also be
interesting to see if we can incorporate functional interaction weight in our study, to
make the modular decomposition problem more realistic with respect to real world
interactions.

Our research work combines link stream theory and information theoretic com-
pression to achieve spatiotemporal compression in a link stream. Theoretically, this
framework is still in its infancy, and a lot needs to be done before we can proceed
towards full-scale applications. However, we strongly believe that this foundational
work can be used to achieve relaxed decomposition of a link stream in an optimal
manner to reveal the modular behavior of the involved nodes, which would be a
valuable contribution to the ever growing field of dynamical network research.

∗ ∗ ∗
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