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1. Introduction
Keywords: Markov chain, Quasi-stationary distribution, Birth and Death process,
Particle method.

Markov chain, a stochastic process with Markov property, has a wide appli-
cation in biological modeling, finance, gambling and etc. In particular, birth and
death chain where the states represent the current size of a population and where the
transitions are limited to birth and death is a special case of homogenous Markov
Chain.

When homogenous markov chain is irreducible, positive recurrent and aperi-
odic, then we have a theory stating that starting from an arbitrary initial distribution,
it will converge almost surely to the invariant distribution. Therefore, the asymp-
totic behavior of a markov chain can be characterized by an invariant distribution.
However, in the case where absorbtion is certain, we have a trivial invariant dis-
tribution (1, 0, 0, ..) (not necessarily unique). It is interesting that what happens
before absorbtion. One way to describe ”the asymptotic behavior of the Markov
chain before absorbtion” is the Quasi-stationary distribution.

There are many articles where they studied the existence of a quasi station-
ary distribution of an irreducible and aperiodic markov chain and its asymptotic
behavior.

The goal of this document is to describe the existing theory , to extend results
to 2D birth and death chain which is reducible and to simulate the conditioned
processes.

In the first part of the report, the quasi-stationary distribution of an absorbing
Markov chain is introduced. From the papers of J.N.Darroch and E. Seneta, we
see that the problem of finding a quasi-stationary distribution, which is an invariant
distribution conditioned on non absorbtion, of irreducible, aperiodic, finite Markov
chain is equivalent to finding the left eigenvector corresponding to the maximal
eigenvalue of a substochastic, primitive matrix. For infinite countable state space,
there are some more restriction to ensure the above statement.

Next, we study quasi-stationary distribution of birth and death process in 2D.
This problem is the stochastic model of a competition between two species before
extinction. Therefore, it gives an answer to questions ”Which species will sur-
vive?” or ”Can they coexist?”.
In reducible case, we see that quasi stationary distribution exists but not unique
and depends on initial state. Also, we consider a special case where we can find
the form of eigenvectors or eigenvalues of substochastic matrix which is related to
finding quasi stationary distribution.

Instead of checking maximal eigenvalues and corresponding eigenvectors, the
simulation of markov chain conditioned on non-absorbtion is an another approach
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to answer above questions. This can be done by particle method algorithm. Using
the particle method, we study particular cases of birth and death processes and we
analyze the behavior of the the process depending on its parameters.

2. Preliminary
2.1 Discrete-time Markov chains

Sequences of independent and identically distributed random variables are stochas-
tic processes. Discrete time homogenous Markov chains are a very special class of
stochastic processes which is allowed for some dependence on the past. However,
the probabilistic dependence on the past is only through the previous state. Also,
this process can be represented by deterministic recurrence equations of random
variables.

Definition (Xn)n>0 is a homogenous Markov Chain with initial distribution λ
and transition matrix P if
(i) X0 has distribution λ;
(ii) For n > 0, conditional on Xn = i, Xn+1 has distribution (pi j : j ∈ I) and is
independent of X0, ..., Xn−1.

P.S. Countable state space and homogenous Markov chains are considered
throughout this report . Also transition matrix is not restricted to finite size.

Definition The probability starting from i that (Xn)n>0 ever hits A is then hA
i =

Pi(HA < ∞). When A is a closed class, hA
i is called absorption probability.

Example 2.1.1(Birth and death chain) For i = 1, 2, ..., we have 0 < pi < 1
birth and qi = 1 − pi death probability. 0 is an absorbing state.
We are going to calculate absorption probability starting from state i.
h0 = 1, hi = pihi+1 + qihi−1, for i = 1, 2, .... pi + qi = 1. After solving recurrence
relation, we will get hi = 1 − A(γ0 + ... + γi−1) where γ0 = 1, A = h0 − h1, γi =
qiqi−1...q1
pi pi−1...p1

.
In the case

∑∞
i=0 γi = ∞, the restriction 0 6 hi 6 1 forces A = 0 and hi = 1.

However, if
∑∞

i=0 γi < ∞ then we can take A > 0 as long as 1−A(γ0 + ...+γi−1) > 0
for all i. Therefore A = (

∑∞
i=0 γi)−1 and hi =

∑∞
j=i γ j/

∑∞
j=0 γ j.

Definition We write i→ j if Pi(Xn = j for some n > 0) > 0.
We say i communicates with j and write i↔ j if both i→ j and j→ i.
The relation ”↔” is reflexive, symmetric and transitive. Therefore, it is an equiva-
lence relation on I, and thus partitions I into communicating classes.

Definition We say that a class C is closed if i ∈ C, i→ j imply j ∈ C. The state
i is absorbing if {i} is a closed class. A transition matrix P where I is a single class
is called irreducible.

Definition Let (Xn)n>0 be a Markov chain with transition matrix P. We say that
a state i is recurrent if Pi(Xn = i for infinitely many n) = 1. We say that i is transient
if Pi(Xn = i for infinitely many n) = 0.
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Example2.1.2 1D Random Walk We take state space as E = Z. The nonzero
terms of its transition matrix are pi,i+1 = p, pi,i−1 = 1 − p, where p ∈ (0, 1). The
nature of its any state can be verified. For example, let’s take 0. p00(2n + 1) = 0
and p00(2n) =

(2n!)
n!n! pn(1 − p)n.

By using Stirling’s equivalence formula n! ∼ (n/e)n
√

2πn, p00(2n) ∼ [4p(1−p)]n
√
πn .

If p , 1/2, then 4p(1 − p) < 1 and the series converges. Therefore, in this case it
is transient. For p = 1/2, the series diverges, so it is recurrent.

Invariant distributions
Definition We say a measure λ is invariant if λP = λ.
Example 2.1.3(Birth and Death chain) We take state space E = N,

0 is an absorbing state. From state i, there is a birth with probability pi to state i+1,
death with qi to state i − 1 and with probability r to stay at state i.

To be an invariant measure, it must satisfy
π(i) = pi−1π(i − 1) + riπ(i) + qi+1π(i + 1) for i ∈ N, and π(0) = π(1)q1.
From this recurrence relation, we will get π(i) = π(0) p1 p2...pi−1

q1q2...qi
.

For this solution to be an invariant distribution, it must be a probability.
Therefore, π(0) > 0,

∑∞
i=1 π(i) = 1.

π(0){1 + 1
q1

+
∑∞

i=1
p1 p2...pi−1
q1q2...qi

} = 1.
Thus a stationary distribution exists if and only if

∑∞
i=1

p1 p2...pi−1
q1q2...qi

< ∞.
Theorem 2.1.1(The uniqueness of Invariant measure) The invariant measure

of an irreducible recurrent stochastic matrix is unique up to a multiplicative factor.
Theorem 2.1.2 An irreducible recurrent HMC has a unique stationary distri-

bution if its invariant measure x satisfy
∑
i∈E

xi < ∞.

Example 2.1.4 As we have seen from example 2.1.2, random walk in 1D ,
when p=1/2, it is recurrent and irreducible. If we take πi = 1 for all i. Then
πi = 1

2πi−1 + 1
2πi+1, so π is invariant. By theorem 2.1.1, any invariant measure must

be scalar multiple of π. Since
∑
i∈Z
πi = ∞, there can be no invariant distribution.

On the other hand, if p , 1/2 then it is transient. We can construct counter
example of uniqueness of invariant distribution. In this case, we have
πi = A + B(p/q)i, A, B ∈ R two parameter family of invariant measures.

Convergence to equilibrium
Definition Let us call a state i aperiodic if p(n)

ii > 0 for all sufficiently large n.
Lemma 2.1.5 Suppose P is irreducible and has an aperiodic state i. Then,

for all states j and k, p(n)
jk > 0 for sufficiently large n. In particular, all states are

aperiodic.
Theorem 2.1.6 Let P be irreducible and aperiodic , and suppose that P has

an invariant distribution π. Let λ be any distribution. Suppose that (Xn)n>0 is
Markov(λ, P). Then P(Xn = j)→ π j as n→ ∞ for all j.
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In particular, p(n)
i, j → π j as n→ ∞ for all i, j.

2.2 Continuous time Markov processes
Definition A stochastic process {X(t), t > 0}, defined on a probability space

(Ω, F, P) with values in a countable set S , called the state spaces of the process,
is called a continuous-time Markov chain if for any finite set of times 0 6 t1 <

t2 < ... < tn < tn+1 and corresponding set i1, i2, ..., in−1, i, j of states of S such that
P{X(tn) = i, X(tn−1) = in−1, ..., X(t1) = i1} > 0, we have

P{X(tn+1) = j|X(tn) = i, X(tn−1) = in−1, ..., X(t1) = i1} = P{X(tn+1) = j|X(tn) = i}.

If for all s, t such that 0 6 s 6 t and all i, j ∈ S the conditional probability
P{X(t) = j|X(s) = i} appearing on the right hand-side of equation depends only on
t − s, then the process is homogeneous.

Definition Pi j(t) = P{X(t) = j|X(0) = i}, i, j ∈ S , t > 0 is called the transition
function of the process. Let Pi j(t) be a transition function. A matrix Q whose
(i, j)th component is the number qi j = P′i j(0) is called infinitesimal generator of
stochastic process X.

Proposition2.2.1 P′ii(0) = − limt→0[1 − Pii(t)]/t = −qi exists, but may be ∞.
Moreover, qi = 0 if and only if Pii(t) = 1 for all t > 0.
A state i is said to be an absorbing state if qi = 0.

Birth and death process
Let’s consider a continuous time Markov chain {X(t), t > 0} with state space S =

{0, 1, 2...} with stationary transition probabilities Pi j(t), i.e., Pi j(t) = P{X(t + s) =

j|X(s) = i}. In addition we assume that Pi j(t) satisfy the following postulates:
1) Pi,i+1(h) = λih + o(h), as h→ 0, i > 0.
2) Pi,i−1(h) = µih + o(h), as h→ 0, i > 0.
3) Pii(h) = 1 − (λi + µi)h + o(h), as h→ 0, i > 0.
4) Pi j(0) = δi j.
5) µ0 = 0, λ0 > 0, µi, λi > 0, i = 1, 2, ....
These o(h) in each case may depend on i. The matrix

Q =


−λ0 λ0 0 0

µ1 −(µ1 + λ1) λ1 0
. . .

0 µ2 −(µ2 + λ2) λ2
. . .

. . .


is called the infinitesimal generator of the process. The parameters λi, µi are

called, respectively, the infinitesimal birth and death rates. The process X(t) is
known as a birth and death process.

In postulate 1 and 2 we are assuming that if the process starts in state i, then in
a small interval of time the probabilities of the population increasing or decreasing
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by 1 are essentially proportional to the length of the interval. Since the Pi j(t) are

probabilities, we have Pi j(t) > 0 and
∞∑
j=1

Pi j(t) = 1.

Perron Frobenius Theorem Let A be a nonnegative irreducible and aperiodic
rxr matrix. ∃ eigenvalue λ1 ∈ R+ such that λ1 > λi for any other eigenvalue λi.
Moreover, the left eigenvector v and the right eigenvector ω ,such that v′ω = 1,
corresponding to λ1 can be chosen positive. Furthermore,

An = λn
1ωv′ + o(nm2−1|λ2|

n)

where λ2 is the second biggest eigenvalue by modulus, and m2 is the multiplicity
of λ2.

Corollary Let’s suppose all states in A communicates, then there exists eigen-
value ρ1 of C, with maximal real part. It is real, simple, and less than zero. Also,
there are corresponding unique positive left and right eigenvectors v, ω such that
v′ω = 1.
Q(t) = exp Ct = etρ1ωv′ + o(etρ′) where v′e = 1 e is an unit vector and ρ′ < ρ1.

3.Quasi-stationary distribution
3.1 Quasi-stationary distribution of finite, discrete time markov chains
We consider a Markov chain, (Xn, n > 0), in which there is a set T of transient
states from which the process is certain to be absorbed into the remaining states.
Let’s suppose the chain have states 0, 1, 2, ..., s with transition matrix

P =

[
1 0′

p0 Q

]
p0 , 0, Q is s× s irreducible, aperiodic substochastic matrix and p0, 0 are s×1

vectors.
Definition Let [q0(n), q′(n)] denote the probability distribution of Xn over all

states (s+1) states at time n and denote by d(n) the conditional distribution

d(n) =
q(n)

1 − q0(n)
.

Equivalently, we can say dk(n) = Pd(0)(Xn = k|Xn , 0).
Definition If d(n + 1) = d(n) = d then, we call d a quasi stationary distribution.

Equivalently, we can say that Pd(n)(X1 = k|X1 , 0) = dk(n) = dk.
Proposition3.1.1 d is a quasi-stationary distribution if and only if d is the left

eigenvector of Q with non-negative components.
C A = [q0(n), q′(n)]P = [q0(n + 1), q′(n + 1)]⇒ A = [q0(n) + q′(n)p0, q′(n)Q] =

[q0(n + 1), q′(N + 1)]. Therefore d must satisfy d′Q = ρd′. Q is irreducible and
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the elements of d are non-negative, so it follows from extended Perron Frobenius
theorem that ρ is the real maximal eigenvalue of Q and d = v, where v is normalized
non-negative left eigenvector of Q corresponding to maximal eigenvalue. B

Limiting conditional distribution We can interpret v as an asymptotic behav-
ior of conditional distribution. Let’s denote Pn = (p(n)

i j ).
Proposition3.1.2 Conditional distribution of discrete time finite Markov chain,
starting from an arbitrary initial distribution π, converges to the quasi-stationary
distribution.
C If the process starts in state i with probability πi, then the probability that it has
been absorbed by time n is

∑
i∈T

πi p
(n)
i0 , and given that it is still in T , the conditional

probability that it is in state j at time n is

Pπ(Xn = j|Xn , 0) =

∑
i∈T

πi p
(n)
i j∑

i∈T
πi(1 − p(n)

i0 )
=
π′Qn f j

π′Qne

where f j is s × 1 vector with unity in the j-th row and zeros elsewhere.
Since Q is irreducible and aperiodic, by Perron Frobenius theorem
Qn = ρn

1ωv′ + o(nk|ρ2|
n) where ρ1- maximal eigenvalue of Q, ω, v are correspond-

ing normalized, positive right and left eigenvector, ρ2- second biggest eigenvalue
by module, k = m2 − 1 (m2 - multiplicity of ρ2).

B =

∑
i∈T

πi p
(n)
i j∑

i∈T
πi(1 − p(n)

i0 )
= v j + o(nk(

|ρ2|

ρ1
)n).

When we take a limit as n→ ∞, B→ v j. B
3.2. Quasi-stationary distribution of discrete time Markov chain with

countable infinite states
When it is infinite state space, there are 2 distinct features from finite state space.
1) Absorbtion is no longer certain.
2) Quasi-stationary distribution depend on initial distribution.

From paper ”Ergodic properties of non-negative matrices” by Vere-Jones, D., a
finite, irreducible, substochastic matrix Q has the property that its convergence pa-
rameter R (the radius of convergence of the functions Pi j(z) =

∑
n p(n)

i j zn) is strictly
greater than unity, and Q is R-positive. However, in infinite case, convergence
radius is not necessarily greater than unity unless the matrix is R-positive.

Lemma3.2.1 The following conditions on Q are equivalent, and each implies
that the matrix has a convergence parameter R and is R-positive:
1) For some i and j, the sequence p(n)

i j R(n) tends to a finite non-zero limit as n→ ∞.
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2) There exists non-negative, non-zero vectors {vk}, {ωk} such that R
∑

k∈T
vk pk j =

v j( j ∈ T ), R
∑

k∈T
pikωk = ωi(i ∈ T ) and

∑
k∈T

vkωk < ∞.

Lemma3.2.2 Suppose that Q is a substochastic matrix with convergence pa-
rameter R, and suppose Q is R-positive. Then either R > 1, or R = 1 and the
matrix is stochastic.

We can see the proof of above 2 lemmas from the article ”On quasi-stationary
distributions in Markov chains with a denumerable infinity of states” by E. Seneta
and D. Vere-Jones.

Here, it is the analogue theorem for finite chains described in section 2.
Theorem(Main limit theorem) Suppose that Q is irreducible, aperiodic, and sub-
stochastic. If Q is R-positive with R > 1, and the left eigenvector {vk} satisfies the

condition
∑

vk < ∞ then the limit of Pi(Xn = j|Xn , 0) =
p(n)

i j∑
k∈T

p(n)
ik

exists and defines

a probability.

C There is a theorem stating that an individual sequence {p(n)
i j Rn, n = 1, 2, 3...}

tend to finite non-zero limits λi j which can be evaluated in terms of the left and
right eigenvectors. λi j = (vkωk)/

∑
k∈T

vkωk. (”Geometric ergodicity in denumerable

Markov chains” by D.Vere-Jones).
There is also another theorem stating that when Q is R-positive, the necessary and
sufficient condition for the sums

∑
k∈T p(n)

ik Rn to tend to a finite limit as n→ ∞ is the
convergence of series

∑
vk < ∞. (”Ergodic properties of non-negative matrices”

by D. Vere-Jones).
Therefore we have

lim
n→∞

Pi(Xn = j|Xn , 0) =

lim
n→∞

p(n)
i j Rn

lim
n→∞

∑
k∈T

p(n)
ik Rn

=
v j∑

k∈T
vk

= v j.B

Extensions to an arbitrary initial distribution
Theorem 3.2.1 Suppose that Q is irreducible, aperiodic and substochastic and has

a convergence parameter R > 1. Then if the quantities

∑
i∈T

πi p
(n)
i j∑

i∈T

∑
j∈T

πi p
(n)
i j

tend to limits v j

which form a probability distribution, this distribution is a left non-negative eigen-
vector for some some eigenvalue ρ in the range 1/R 6 ρ < 1. Conversely every left
eigenvector satisfying condition

∑
vk < ∞ can be reached as a limit of the condi-

tional probabilities for a suitable choice of the initial distribution π.
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For the later use, as a test problem for simulation of quasi-stationary distribu-
tion we now introduce some cases where we can analytically can find the quasi
stationary distribution.

The semi-infinite simple random walk with absorbtion The matrix Q which
describes the simple random walk on the non-absorbing states T = {1, 2, ...} is
irreducible and periodic with period 2.

Q =


0 b 0 0

a 0 b 0
. . .

0 a 0 b
. . .

. . .


where a + b = 1.

Let’s consider the case a > b(absorbtion is certain). Let’s denote vi j =
p(n)

i j
∞∑

k=1
p(n)

ik

From direct calculation we can check that, we have left and right eigenvectors
{v j}, {ω j} corresponding to the eigenvalue 2

√
ab, where

v j = v1 j
(√

b
a

) j−1
, j = 1, 2... and ω j = ω1 j

(√
a
b

) j−1
, j = 1, 2....

In article ”On Quasi-stationary distributions in discrete-time Markov chains
with a denumerable infinity of states” by E. Seneta and D. Vere-Jones, they found
the quasi stationary distribution explicitly using combinatorics, and approximating
probability of first passage to 0 by Stirling’s formula.

lim
n→∞

∑n
m=1 v(m)

i j

n
= c j j

√b
a

 j−1

= c jv j

independently of the initial state, where

c j =


0 ,if a = b = 1/2
1
2 [ 1−4ab

a ] ,if a > b, j odd
1
2 [ 1−4ab

a
1

2
√

ab
] , if a > b, j even

The extended semi-infinite simple random walk with absorbtion When we
to allow to pause in any state, we will obtain more general matrix of the following
form: (the matrix consists of non-absorbing states T = {1, 2, ...}, excluding only
absorbing state {0})

Q1 =


c b 0 0

a c b 0
. . .

0 a c b
. . .

. . .
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where a+b+c = 1, a > 0, b > 0, c > 0 and the substochastic matrix Q1 is aperiodic.
If we want to find the Quasi-stationary distribution following the same technique
used in the previous article, the problem becomes rather less manageable (they also
mentioned this). However we can prove that this problem’s solution is as the same
as the previous problem’s solution. Therefore,

Pi(Xk = j|Xk , 0)→ v j

where
∞∑
j=1

v j = 1, if a > b.

C First we note that {v j} and {ω j} of the previous problem are the eigenvectors
of the Q1 corresponding to eigenvalue (c + 2

√
ab). Q1 is irreducible and elements

of v is nonnegative, therefore by extended Perron Frobenius theorem v is the Quasi-
stationary distribution of Q1. B

3.3. Quasi stationary distribution of continuous time, finite Markov Chain
Let’s consider (Xt, t > 0) finite, birth and death process. We take as before

”0” as only absorbing state, T = {1, 2, ..., n} transient states. Then the matrix R

of infinitesimal transition probabilities qi j (qi j > 0, i , j,
n∑

j=0
qi j = 0) have the

following form:

R =

[
0 0′

q0 C

]
where q0 , 0 and the matrix C corresponds to the transient set T. q0 , 0 condition
ensures that absorbtion will eventually occur from any state of T.
As we mentioned in preliminary part i , j P(Xt+s = j|Xt = i) = qi js + o(s), we
are assuming that if the process starts in state i, then in a small interval of time
the probabilities of the population increasing or decreasing by 1 are essentially
proportional to the length of the interval.

The matrix of transition function P(t) = {Pi j(t)}, the transition probability from
state i to state j at time t, is P(t) = exp Rt (exponential matrix).

If we denote Q(t) = exp Ct, and

P(t) =

[
1 0′

p0(t) Q(t)

]
where p0(t) , 0, t > 0. Therefore, this matrix form is analogous form to the
discrete time case.

Definition Let’s suppose, the probability distribution over all (n+1) states at
time t is [π0(t), π′(t)] then the conditional distribution restricted to the transient set
T is

d(t) =
π(t)

1 − π0(t)
.
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Equivalently, we can say dk(t) = Pd(0)(Xt = k|Xt , 0).
Definition If d(t) = d, t > 0 where d′e = 1 then, we call d a quasi stationary

distribution. Equivalently, we can say that Pd(Xt = k|Xt , 0) = dk (∀t > 0,∀k > 1).
Proposition3.3.1 There is an unique quasi-stationary distribution for continu-

ous time birth and death process if all states of T communicates. Moreover d = v,
where v is the left eigenvector corresponding to maximum eigenvalue.
C Since π′(t1)Q(t2) = π′(t1+t2), t1, t2 > 0, we have that d′(t1)Q(t2) = ρ(t1, t2)d′(t1+

t2), where ρ is a function depending on t1 and t2. If d exists it satisfies d′ exp Ct2 =

ρ(t1, t2)d′. For fixed t2 > 0, Q(t2) is irreducible aperiodic, substochastic matrix.
Therefore, it has the unique maximal eigenvalue exp ρ1t2 and eigenvectors ω, v′,
where ρ, ω, v′ are the corresponding quantities for C. It follows that if d exists (non-
negative) then d = v, ρ(t1, t2) = exp ρt2.
Conversely putting π(0) = v, d(t) = d, t > 0. Hence we have a unique quasi-
stationary distribution d = v. B

Proposition3.3.2 When we start from an arbitrary π initial distribution, it ap-
proaches to v with an exponential rate as n→ ∞.
CWe consider the probability that the process is in state j ∈ T at time t, given

that it has not yet been absorbed, and started from state i ∈ T with probability πi.
This is, for j ∈ T ,

Pπ(X(t) = j|X(t) , 0) =

∑
i∈T

πi pi j(t)∑
i∈T

πi(1 − pi0(t))
=
π′Q(t) f j

π′Q(t)e

where f j is s × 1 vector with unity in the j-th row and zeros elsewhere and e is an
unit vector. By the Perron frobenius theorem, we have

Pπ(X(t) = j|X(t) , 0) =

∑
i∈T

πi pi j(t)∑
i∈T

πi(1 − pi0(t))
= v j + o(et(ρ′−ρ)),

where ρ′ < ρ < 0. Therefore, Pπ(X(t) = j|X(t) , 0)→ v j as t → ∞, independently
of initial distribution. B

4.Birth and death chain in 2D
4.1 The model of population dynamics in 2D as a discrete time finite Markov
chain
We consider a model of population dynamics of 2 species which are in competition.
Therefore, we intend to study asymptotic behavior of the population sizes before
absorption. (After a long enough time, absorption is certain.) In other words,
we would like to see which population will survive or whether they can coexist
conditioned on non-extinction.
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Let’s consider a discrete-time, finite birth and death chain (Xn,Yn) in [0, .., n]2

with the following transition:
1) (i, j)→ (i, j) with probability ri j,
(i, j)→ (i + 1, j) w.p. p(1)

i j , (i, j)→ (i, j + 1) w.p. p(2)
i j

(i, j)→ (i − 1, j) w.p. q(1)
i j , (i, j)→ (i − 1, j) w.p. q(2)

i j .
2) (0,0) is only absorbing state.
3) When either coordinate hits zero there is no birth and death probability for that
component and when either coordinate reaches state ”n” then there is no birth prob-
ability.

Let’s denote for i, j > 1, S 1 = {(0, i)|n 6 i 6 1}, S 2 = {(i, 0)|n 6 i 6 1} and
S 3 = {(i, j)|n 6 i, j 6 1}.

When we order our states appropriately as (0, 0), (0, i) ∈ S 1, (i, 0) ∈ S 2, (i, j) ∈
S 3 ∀1 6 i, j 6 n, we will have the following stochastic matrix:

P =


1 0 0 0
∗ A1 0 0
∗ 0 A2 0
0 B C A3


In stochastic non-irreducible matrix P, there are at most 5 nonzero entries in

any row. T = {(0, 1), (1, 0), ..} transient set has 3 irreducible classes S 1, S 2, S 3.
Moreover, since ri j > 0 for any state s ∈ N∗, by lemma2.1.5 ∃N such that ∀n >

N, Pi1 j1→i2 j2(n) > 0 for each stochastic matrixes corresponding to sets S 1, S 2 and
S 3. Therefore the matrixes A1, A2 and A3 are aperiodic and irreducible.

Non-irreducible situations were already studied e.g. the paper ”On quasi-
stationary distributions in absorbing discrete time finite markov chains” by N.Darroch
and E.Seneta. This particular case has not been studied in the literatures as far as
we know.

4.2 Convergence to Quasi-stationary distributions
We want to find the asymptotic behavior of the conditional distribution:

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0).

We have several cases:
1) The process starts from S 1 set (S 2 set) and (i, j) ∈ S 1. (i, j ∈ S 2)
2) The process starts from S 3 set and (i, j) ∈ S 3.
3) The process starts from S 3 set and (i, j) ∈ S 2. ((i, j) ∈ S 1)

For this and next section, we denote λ1, λ2, λ3 as maximum eigenvalues corre-
sponding to matrixes A1, A2, A3, ω(1), ω(2), ω(3) as right positive eigenvectors cor-
responding to λ1, λ2, λ3 eigenvalues, v

′(i)ω(i) = 1 v(1), v(2), v(3) as left positive nor-
malized eigenvectors corresponding to λ1, λ2, λ3 eigenvalues.
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λ = max{λ1, λ2, λ3}, µ = max{|µ1|, |µ2|, |µ3|} where µi are second biggest eigen-
values (by modulus) of matrix Ai. m = max{m1,m2,m3} where mi = m∗i − 1,m∗i are
multiplicity of eigenvalue µi.

e = (1, 1, 1, ...), f(a,b) = (0, 0.., 0, 1, 0, 0..) ((a, b)th component is 1 and all other
elements are zero). Also we suppose that dimension of both e and f vectors are
flexible for matrix computation.

Pn =


1 0 0 0
∗ An

1 0 0
∗ 0 An

2 0
∗ Bn Cn An

3


where Bn =

n−1∑
k=0

An−k−1
3 BAk

1 and Cn =
n−1∑
k=0

An−k−1
3 CAk

2.

( Cn = Cn = CAn−1
3 + Fn−1B = ... =

n−1∑
k=0

An−k−1
3 CAk

2. In a similar way we find Bn)

1) For this case, the corresponding substochastic transition matrix is irreducible
and aperiodic, therefore as we have seen in the part 1, asymptotic behavior will
converge to the left normalized positive eigenvector of matrix A1.
(a, b), (i, j) ∈ S 1(S 2), lim

n→∞
P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) = v(1)

i j (v(2)
i j ). where

v(1)
i j (v(2)

i j )is the eigenvector corresponding to maximal eigenvalue of matrix A1(A2).
2) (a, b), (i, j) ∈ S 3

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
P(a,b)(i, j)(n)∑

(p,q)∈S 1∪S 2∪S 3

P(a,b)(p,q)(n)
=

=
An

3((a, b)(i, j))

f(a,b)An
3e′ +

n−1∑
k=0

f(a,b)An−k−1
3 CAk

2e′ +
n−1∑
k=0

f(a,b)An−k−1
3 BAk

1e′

By using Perron-Frobenius theorem:

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
ω(3)

(a,b)v
(3)
(i, j) + o(nk( µλ3

)n)∑
(p,q)∈S 3

ω(3)
(a,b)v

(3)
(p,q) + o(nk( µλ3

)n) + R

where R =
∑

(p4,q4)

∑
(p5,q5)

∑
(p1,q1)

1
λ3
ω(3)

(a,b)v
(3)
(p1,q1)B(p1,q1)(p2,q2)ω

(1)
(p2,q2)v

(1)
(p3,q3)

∑n−1
k=0(λ1

λ3
)k+∑

(p3,q3)

∑
(p2,q2)

∑
(p1,q1)

1
λ3
ω(3)

(a,b)v
(3)
(p1,q1)C(p1,q1)(p2,q2)ω

(2)
(p2,q2)v

(2)
(p3,q3)

∑n−1
k=0(λ2

λ3
)k
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(p3, q3), (p2, q2) ∈ S 2, (p1, q1) ∈ S 3, (p4, q4), (p5, q5) ∈ S 1.
If λ3 , λ then numerator is finite, so at least one of the component of R goes

to infinity. Therefore,

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) = 0

If λ1 = λ3 = λ or λ2 = λ3 = λ then the above statement also holds, because of

the term
n−1∑
k=0

( λi
λ3

)k → ∞.

If λ3 = λ, λ3 > λ1, λ3 > λ2 then

n−1∑
k=0

f(a,b)An−k−1
3 BAk

1e′/λn
3 =

1
λ

n−1∑
k=0

f(a,b)ω
(3)v(3)′B(

A1

λ3
)ke′+

1
λ

n−1∑
k=0

f(a,b)o((n−k−1)m(
µ

λ
)(n−k−1))B(

A1

λ
)ke′

Since λ1 < λ, µ < λ, 1
λ

n−1∑
k=0

f(a,b)o(n)k(µλ )n−k−1B(λ1
λ )kω(1)

(a,b)v
(1)′e′ → 0.

Also the same result holds for
n−1∑
k=0

f(a,b)An−k−1
3 CAk

2e′/λn.

Since, if θ > λ (θ is the maximal eigenvalue of nonnegative aperiodic and

irreducible matrix M), 1
λ

n∑
k=0

Mk

λk → (λI − M)−1. Therefore,

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
v(3)

(i j)

1 + v(3)′B(λ3I − A1)−1e′ + v(3)′C(λ3I − A2)−1e′
.

3) (a, b) ∈ S 3, (i, j) ∈ S 2

B = P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =

n−1∑
k=0

f(a,b)An−k−1
3 CAk

2 f(i, j)∑
(p,q)∈S 1∪S 2∪S 3

P(a,b)(p,q)(n)

=

n−1∑
k=0

f(a,b)An−k−1
3 CAk

2 f ′(i, j)

f(a,b)An
3e′ +

n−1∑
k=0

f(a,b)An−k−1
3 CAk

2e′ +
n−1∑
k=0

f(a,b)An−k−1
3 BAk

1e′

If λ3 = λ, λ3 > λ1, λ2 then as we did in previous calculation,

B→
v(3)′C(λ3I − A2)−1 f ′(i, j)

1 + v(3)′B(λ3I − A1)−1e′ + v(3)′C(λ3I − A2)−1e′
.

If λ2 = λ, λ2 > λ1, λ3 then
f(a,b)An

3e
′

λn → 0,

n−1∑
k=0

f(a,b)An−k−1
3 CAk

2e
′

λn
2

→ 1
λ2

f(a,b)(λ2I −

A3)(−1)Cω(2)v(2)′e′,
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Using the Perron Frobenius theorem, for the following component the leading term

converges to zero:

n−1∑
k=0

f(a,b)An−k−1
3 BAk

1e′

λn
2

≈
n−1∑
k=0

λn−k−1
3 λk

1
λn

2
ω(3)

(a,b)v
′(3)Cω(1)v(1)′ → 0. There-

fore in this case,

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
f(a,b)(λ2I − A3)(−1)Cω(2)v(2)

(i, j)

f(a,b)(λ2I − A3)(−1)Cω(2)v(2)′e
= v(2)

(i, j).

If λ1 = λ, λ1 > λ2, λ3 then the term in numerator goes to zero and denominator
is nonzero. Therefore lim

n→∞
P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) = 0.

If λ3 < λ1 = λ2 = λ then
f(a,b)An

3e
′

λn → 0,

n−1∑
k=0

f(a,b)An−k−1
3 CAk

2e
′

λn → 1
λ f(a,b)(λI −

A3)(−1)Cω(2),

n−1∑
k=0

f(a,b)An−k−1
3 BAk

1e
′

λn → 1
λ f(a,b)(λI − A3)(−1)Bω(1). Therefore,

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
f(ab)(λI − A3)−1Cω(2)v(2)

(i, j)

f ′(ab)(λI − A3)−1Cω(2) + f(ab)(λI − A3)−1Bω(1) .

If λ3 = λ1 = λ2 = λ then when we use Perron-Frobenius theorem, the lead-
ing term in numerator and denominator is o(nλn). Now we prove that other terms
are negligible. To have easier notation, we suppose n is odd. (When n is even,

it is the same.) R1 =
(n−1)/2∑

k=0
f(a,b)(λn−k−1

3 ω(3)v
′(3) + o((n − k − 1)mµn−k−1))CAk

2e′ +

n−1∑
k=(n−1)/2+1

f(a,b)(An−k−1
3 C(λk

2ω
(2)v

′(2) + o(kmµk))e′,

When we change the index:
n−1∑

k=(n−1)/2+1
f(a,b)(An−k−1

3 C(λk
2ω

(2)v
′(2) + o(kmµk))e′ =

(n−1)/2−1∑
k=0

f(a,b)Ak
3C(λn−k+1ω(2)v

′(2) + o((n − k + 1)mµn−k+1))CAk
2e′.

Therefore, it is sufficient to see that o(µn
(n−1)/2∑

k=0
(λµ )k) is negligible. o(µn

(n−1)/2∑
k=0

(λµ )k) 6

o(µn(λµ )(n+1/2)) = ◦(λn).
Therefore, R1 ∼ λ

n−1n[ f(a,b)ω
(3)v

′(3)Cω(2)v
′(2)e′]. After simplifying the fraction we

have the following:

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
v
′(3)Bω(1)v

′(1) f(i, j)
v′(3)(Cω(2) + Bω(1))

.

In the case when process ends in state from S 1, we have similar results. We
can see that not likely to irreducible case, the asymptotic behavior is dependent on
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initial state. Furthermore, we studied asymptotic behavior of our model through
maximal eigenvalues of sub matrixes. If the maximal eigenvalue of A3 is not the
biggest one, when we start from state, s ∈ S 3, then eventually it will converge to
state in S 1 or S 2. If it is, then there is a probability to stay in set S 3(co-existence).

4.3 The model of population dynamics in 2D as continuous-time finite
Markov chains
We study the analogue model of birth and death chain in 2D, where infinitesimal
birth and death rates are given by the following:
1) (i, j)→ (i, j) with rate ri j,
(i, j)→ (i + 1, j) with rate p(1)

i j , (i, j)→ (i, j + 1) with rate p(2)
i j

(i, j)→ (i − 1, j) with rate q(1)
i j , (i, j)→ (i − 1, j) with rate q(2)

i j .
2) (0,0) is only absorbing state.
3) When either coordinate hits zero there is no birth and death rate for that compo-
nent and when either coordinate reaches state ”n” then there is no birth rate.

As we mentioned before we are using the notation in 4.2.
It will have the following infinitesimal generator if we order them as we did in 4.1.

Q =


0 0 0 0
∗ A1 0 0
∗ 0 A2 0
0 B′ C′ A3


We have seen from section 3.3 , P(t) = eQt =

∞∑
k=0

tk
k! Qk (exponential matrix). Let’s

denote Qi(t) = eAit, i = 1, 2, 3, then

P(t) =


1 0 0 0
∗ Q1(t) 0 0
∗ 0 Q2(t) 0
∗ S 1(t) S 2(t) Q3(t)


where S 1(t) =

∞∑
m=1

(
m−1∑
k=0

Am−k−1
3 B′Ak

1
tm
m! ), S 2(t) =

∞∑
m=1

(
m−1∑
k=0

Am−k−1
3 C′Ak

2
tm
m! ).

1) (a, b), (i, j) ∈ S 1, (S 2). The states in S 1 communicates with itself, therefore
as we did in Proposition 3.3.2:

lim
n→∞

P(a,b)((Xn,Yn) = (i, j)|(Xn,Yn) , 0) =
f(a,b)Q1(t) f ′(i, j)
f(a,b)Q1(t)e′

→ v(1)(i, j).

Similarly, when (a, b), (i, j) ∈ S 2 then it converges to (v(1)(i, j)).
Let’s suppose process stayed in S 3 for t-x time, next shifted to S 2 or S 1 re-

maining there x time. t ∈ R+
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2) (a, b), (i, j) ∈ S 3.

lim
n→∞

P(a,b)((Xt,Yt) = (i, j)|(Xt,Yt) , 0) =
f(a,b)Q3(t) f ′(i, j)∑

(c,d)∈S 1∪S 2∪S 3

P(a,b)(i, j)(t)

Then the denominator of the above fraction is equal to

R = f(a,b)Q3(t)e′ + f(a,b)(
t∫

0
Q3(t − x)BQ1(x)dxe′ +

t∫
0

Q3(t − x)CQ2(x)dx)e′

where B and C matrixes given by following tranisiton probability: (we assume that
transition occurs at time x)
(i, j)→ (i + 1, j) w.p. p(1)

i j /(1 − ri j), (i, j)→ (i, j + 1) w.p. p(2)
i j /(1 − ri j)

(i, j) → (i − 1, j) w.p. q(1)
i j /(1 − ri j), (i, j) → (i − 1, j) w.p. q(2)

i j /(1 − ri j). If
λ3 , λ then lim

n→∞
P(a,b)((Xt,Yt) = (i, j)|(Xt,Yt) , 0) = 0. Because when we

use corollary of Perron Frobenius theorem for every matrices in fraction, the nu-
merator goes to constant and the dominant term of denominator goes to infinity.
t∫

0
e(t−x)λ3exλ1dx/etλ3 = etλ3−etλ1

λ3−λ1
/etλ3 → ∞.

Also, if λ3 = λ = λi, i = 1, 2 then above statement holds.
If λ3 > λ2, λ1 then,

f(a,b)

t∫
0

Q3(t − x)BQ1(x)dxe′ = f(a,b)

t∫
0

(e(t−x)λ3ω(3)v
′(3) + o(e(t−x)µ))BQ1(x)dxe′ ,

and using
t∫

0
esAds = [A−1esA]t

0 = A−1(etA − I),

we can see that second term is negligible.
t∫

0
o(e(t−x)µ)eA1 xdx = etµ(e(A1−Iµ)t−I)(A1−Iµ)−1⇒ etµ(e(A1−Iµ)t−I)(A1−Iµ)−1/etλ3 →

0.

Therefore f(a,b)

t∫
0

Q3(t − x)BQ1(x)dxe′/etλ3 → f(a,b)ω
(3)v

′(3)B(A1 − Iλ3)−1e′, and

similarly f(a,b)

t∫
0

Q3(t − x)CQ2(x)dxe′/etλ3 → f(a,b)ω
(2)v

′(2)C(A2 − Iλ3)−1e′.

lim
n→∞

P =
ω(3)(a, b)v(3)(i, j)

ω(3)(a, b)v′(3)B(A1 − Iλ3)−1e′ + ω(2)(a, b)v′(2)C(A2 − Iλ3)−1e′ + ω(3)(a, b)
.

3)(a, b) ∈ S 3, (i, j) ∈ S 2.

lim
n→∞

P(a,b)((Xt,Yt) = (i, j)|(Xt,Yt) , 0) =

f(a,b)

t∫
0

Q3(t − x)CQ2(x)dx f ′(i, j)∑
(c,d)∈S 1∪S 2∪S 3

P(a,b)(i, j)(t)
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If λ3 = λ, λ3 > λ2, λ1 then, as we did in second case, we will have the following
result:

lim
n→∞

P =
ω(2)(a, b)v

′(2)C(A2 − Iλ3)−1 f ′(i, j)
ω(3)(a, b)v′(3)B(A1 − Iλ3)−1e′ + ω(2)(a, b)v′(2)C(A2 − Iλ3)−1e′ + ω(3)(a, b)

.

If λ2 = λ, λ2 > λ3, λ1 then,

lim
n→∞

P =
v
′(3)C(A3 − Iλ2)−1 f ′(i, j)

v′(3)C(A3 − Iλ2)−1e′
.

If λ1 = λ, λ1 > λ3, λ2 then, the numerator will go to zero and denominator is
constant. lim

n→∞
P = 0

If λ1 = λ2 = λ3 , then the second order term are all negligible.

lim
n→∞

P =
v
′(3)Cω(2)v

′(2) f ′(i, j)
v′(3)Cω(2)v′(2)e′ + v′(3)Cω(1)v′(1) f ′(i, j)

.

After doing similar calculation: If λ = λ2 = λ3 > λ1 then,

lim
n→∞

P =
v
′(3)Cω(2)v

′(2) f ′(i, j)
v′(3)Cω(2)v′(2)e′

.

If λ = λ1 = λ2 > λ3 then,

lim
n→∞

P =
v
′(3)C(A3 − Iλ2)−1 f ′(i, j)

v′(3)C(A3 − Iλ2)−1e′ + v′(3)B(A3 − Iλ2)−1e′
.

5. Particular cases where eigenvalues can be found
We have seen so far that finding eigenvalues and eigenvectors of non-negative ma-
trixes is one way to study the model of population dynamics. In this part we will
see particular cases where we can find the form of eigenvalues and eigenvectors.
Neutral birth and death model
This is the case where each individual are exchangeable. It means each individual
has the same birth and death probability.
We have the states (i, j) = {0 6 i + j 6 N} and transition probabilities: p1

i j =

i
i+ jλ(i + j), p2

i j =
j

i+ jλ(i + j), q1
i j = i

i+ jµ(i + j), q2
i j =

j
i+ jµ(i + j) and r(i, j) = 0

P =


1 0 0 0
∗ A 0 0
∗ 0 A 0
0 B C A1
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Proposition5.1. P has the right eigenvectors of the form vi+ j, ivi+ j, jvi+ j, i jvi+ j.
C It follows directly from Proposition 5.2. B

Proposition5.2. If{
iPd(i + 1, j) + jPd(i, j + 1) = (i + j + d)Pd(i, j)
iPd(i − 1, j) + jPd(i, j − 1) = (i + j − d)Pd(i, j)

(∗)d

deg(Pd) = d then P has the eigenvectors of the form Pd(i, j)vi+ j.
C

A =


0 λ(1,0) 0 0
µ(2,0) 0 λ(2,0) 0
0 µ(3,0) 0 λ(3,0)

0 0
. . .

. . .


We can take the matrix A3 as the linear operator: A1 : Rd → Rd where d =

N(N + 1)/2, u ∈ Rd, u = (ui j, (i j) ∈ S ), for (i, j) , 0.
(Pu)i j = i

i+ jλi+ jui+1, j +
j

i+ jλi+ jui, j+1 + i
i+ jµi+ jui−1, j +

j
i+ jµi+ jui, j−1, Let’s write

i + j = k then iλkui+1, j + jλkui, j+1 + iµkui−1, j + jµkui, j−1 = θku(i, j)
Therefore it reduces to recurrence relation: λkvk+1 + µkvk−1 = θkvk for k > 1 where
θ is the maximal eigenvalue of A3. When (i, j) = (0, 0) then u(0,0) = θu(0,0).

Now we show that Pd(i, j)v(i+ j) satisfies the recurrence relation(the eigenvec-
tor). P(Pdvi+ j) = i

i+ jλi+ jPd(i + 1, j)vi+ j+1 +
j

i+ jλi+ jPd(i, j + 1)vi+ j+1 + i
i+ jµi+ jPd(i−

1, j)vi+ j−1 +
j

i+ jµi+ jPd(i, j−1)vi+ j−1. Here we substitute (∗)d equations and we will

get P(Pdvi+ j) = ( i+ j+d
i+ j λi+ jvi+ j+1 +

i+ j−d
i+ j µi+ jvi+ j−1)Pd(i, j) = θPd(i, j)vi+ j.

Actually, d can be any number to be an eigenvector. However to have solution
in (∗)d we need d to be a degree of polynomial Pd. To see this, let’s take the
coefficient of maximal degree term of polynomial. iPd(i + 1, j) + jPd(i, j + 1) =

(i + j + d)Pd(i, j)→ B.
We can find other eigenvectors using Proposition 5.2. e.g. i j(i − j), i j( j − i).

Furthermore degP(i, j) = 4, P4 = i3 j + i j3 − 3i2 j2 + i j. The set consisting of these
polynomials are vector space.

Conjecture ∀d > 2,∃ a 1-dimensional vector space of (∗)d

Theorem 5.1 If conjecture is true, then all the eigenvectors of P are of the form
Pd(i, j)vi+ j, where vk solves i

i+ jλi+ jPd(i + 1, j)vi+ j+1 +
j

i+ jλi+ jPd(i, j + 1)vi+ j+1 +

i
i+ jµi+ jPd(i − 1, j)vi+ j−1 +

j
i+ jµi+ jPd(i, j − 1)vi+ j−1 = θPd(i, j)vk.

Another example. From the book ”Birth and death processes models with ap-
plications” by P.R.Parthasarathy, R.B. Lenin, page 190, If ηk = ξ+2(k−1)2c, βk(N−
k)(b − (k − 1)c) and νk = (N + k − 1)(b + kc) then,

20




η1 β1 0 0
ν1 η2 β2 0

0
. . . .. ..

.. .. νn ηn

 =

N∏
j=1

{X + 2( j − 1)(Y + [N − ( j − 2)]Z)}

where X = ξ − 2(N − 1)b, Y = 2b − 3c and Z = 4c.
We take ηk = 1 + 2/N2 − 2/N, βk = (N − k)/N2, νk = (N + k − 1)/N2, b =

1/N2, c = 0. ∀k > 2, νk−1 + η + βk = 1. The matrix is substochastic.
6. Simulation of Quasi-stationary distribution

Another approach to study the model is to do simulation by particle method.
6.1. Simulation of Markov chain

By the law of large number, Pi(Xn = k) ≈ 1
N

N∑
j=1

1X j
n=k = XN . Moreover, the

speed , 1√
N

, of convergence is given by the central limit theorem.
With probability more than 95%, the true value of Pi(Xn = k) belongs to the

(random interval) [XN − 1, 96 σ√
N
, XN + 1, 96 σ√

N
] ≈ [XN − 1, 96

√
XN (1−XN )
√

N
, XN +

1, 96
√

XN (1−XN )
√

N
] since σ2 = P(Xn = k)(1 − P(xn = k)).

By using uniform random variable, we choose next state and in this way we sim-
ulate Markov chain. Let’s suppose an unit length which is divided into transition
probabilities. In unit length, throw a point randomly and we choose next step where
it hit.
Example 6.1 We have the following transition probabilities:

i→ i + 1 with probability b
b+a+c(i−1)

i→ i with probability a
b+a+c(i−1)

i→ i − 1 with probability c(i−1)
b+a+c(i−1) .

Then the invariant distribution must satisfy
πk = πk−1

b
b+a+c(k−2) + πk

a
b+a+c(k−1) + πk+1

kc
b+a+ck .

We can see that the invariant distribution has the following form πk = D( b
c )k a+b+c(k−1)

(k−1)! .
Since the invariant distribution is unique for our case, after normalizing we find
πk = c

b(2b+a) e
− b

c ( b
c )k a+b+c(k−1)

(k−1)! .
After implementing it, we had the following result:(for a particular state)

m=5000 ; //number of particles
n=300 ; //steps
pi2 = 0.033 numerical solution
pi1 = 0.0306566 analytical solution
err = - 0.0023434
m=20000 ; //number of particles
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pi2 = 0.0309
pi1 = 0.0306566
err = - 0.0002434

6.2. Particle method Let’s denote the law of the process qn = L(Xn|Xn , 0).
Suppose qn+1 = Kqnqn. From paper ”Particle Motions in Absorbing Medium with
hard and soft obstacles” by P.Del Moral and A. Doucet, the idea is to approximate
qn(k) by 1

N
∑
i=1

NδXi
n

with a dynamics for (X1
n , ...X

N
n ) given by K 1

N
∑N

i=1 δXi
n
.

Algorithm comes from rewriting of K 1
N

∑N
i=1 δXi

n
as a 2 step Markov chain,

step1 : mutation
step2 : selection.

This gives in our case the following algorithm:
1) At the same time we run n particles, when it becomes extinct we randomly re-
place it with another existing particle.
2) At the same time we run n particles and each time every particle is chosen ran-
domly from the previous step extant particles.

The simulation of quasi stationary distribution for the semi-infinite simple ran-
dom walk with absorbtion:(10000 particles)
pi2 = 0.0134
pi1 = 0.0141707
err = 0.0007707
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