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Abstract

Although its prediction power is still a controversial subject, technical analysis is
frequently used by traders around the globe to support some of their investment
decisions. The term refers to a set of tools, graphic and numeric indicators, that
intend to predict the future behavior of an asset based on its historical values.

One of the concepts that appears frequently in technical analysis is resistance.
We will refer to resistance level as a given price level when market pressures
seem to force a repeated maximum. Although the study of some historical data
shows the eventual appearance of resistance levels, most of the mathematical
models used for stock prices, including the well known Black and Scholes model,
do not contemplate this kind of phenomenon.

In [3], Bérard Bergery et al. developed a mathematical model derived from
the Black and Scholes model for including resistance phenomena. Likewise, the
article presented a trading strategy for optimizing the logarithm of the returns
when considering a portfolio with a risky and a risk-less asset assuming the
former follows the resistance mathematical model.

Naturally it arises the question whether this strategy may be used with good
results in a practical environment. In our work, we perform several tests to
determine this possibility. We simulate stochastic paths following the model for
resistance presence, for comparing via Monte Carlo methods the wealths ob-
tained by applying the optimal strategy for a classical Black and Scholes model,
a simple technical analysis strategy (based on moving average and resistance
selling), and the optimal strategy for the resistance model.

The comparisons are made under full knowledge of the parameters and proba-
bility laws involved, as well as in different scenarios for representing estimation
errors.

Interestingly, the tests showed the optimal strategy with resistance proved to
create greater wealth in our tests than the other strategies as long as the esti-
mated law for the number of down-crossings (i.e. the number of times the price
travels from the resistance level to a given fixed level) is close enough to the real
one. The determination of this law appears therefore as a critical component
before using the strategy in real price data.

However, we failed to find real series that show resistance with enough persis-
tence to allow room for investment prediction.
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Introduction to the second
part

A natural question that follows the development of a mathematical strategy is
the possibility to implement it for its use in industry. Indeed, it is not straight-
forward that a strategy, even an optimal one, would give good results when used
in a real context.

On one hand, there is a question about the implementation of the strategy
itself. Frequently, mathematical based strategies depend on parameters (such
as the drift or the volatility) that are generally unknown for the traders. In the
particular case of the optimal resistance strategy, it depends on the knowledge
of at least five parameters and a probability distribution. Therefore parameter
estimation techniques must be used, with the restriction that they need to be
simultaneously fast and relatively easy to implement for them to allow its use
and understanding by non mathematicians, yet precise enough for the strategy
to deliver still interesting returns.

On the other hand, it remains the question about the model error. Mathematical
strategies are constructed under assumptions that the real financial prices may
not follow. In our case of concern, the model assume all the hypothesis of the
Black and Scholes model plus those that allow the presence of a resistance.

This is the main goal of the work performed during our internship in INRIA.
The present document corresponds to the second part of this work. The first
part presents the model used and the algorithms for simulating stochastic paths
following this model. This concepts will be assumed for this part.

The present document is divided in two main chapters. In Chapter 1 we will
study the implementation of the strategy itself, while in Chapter 2 we will focus
on the possible model error.
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Chapter 1

Implementation of the
strategy

A financial series strategy may be described as the investment decisions a trader
should undertake as a function of time.

In order to use the strategy formula derived in [3], we must implement it, mean-
ing transforming it in a valid and usable algorithm for deciding the investment
quantities. As shown in the first part, in our particular case of interest, the
mathematical form of the strategy is a fractional function with some infinite
sums that may be truncated in most cases, becoming an easily implementable
function.

However, some of the variables involved in this calculation are unknown. There-
fore, in this case implementing the strategy includes designing an algorithm for
detecting the resistance level that the financial series show (section 1.1), and
estimating the model parameters (section 1.2) that best fit the series to the
mathematical model. We will focus our attention in this report in those two
steps.

The goodness of the output of the implementation must be tested. We will
use Monte Carlo technique to approximate the probability distribution of the
wealth generation of the implemented strategy, which implies simulating several
different paths for evaluating the output (Section 1.3).

1.1 Resistance detection

A resistance level is commonly defined as “The price at which a stock or market
can trade, but not exceed, for a certain period of time.” 1. Although this defi-
nition appears clear, it does not clarify how to identify a resistance level.

In technical analysis, there is a very wide range of methodologies to find a re-
sistance line. For example, in [4], the resistance and support levels are defined

1www.investopedia.com, June 2009
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in terms of channels constructed around price charts local maxima and minima,
while in [5] some methods called Fibonacci studies (based on using aural pro-
portion ratios) are used for this purpose.

Although we are in principle not interested in solving the problem of finding a
resistance level by itself, any attempt to test by Monte Carlo means the bene-
fits of using an implemented version of the optimal resistance strategy implies
developing an algorithm to identify a resistance level.

Consider a price following the Black and Scholes model. The probability that
the price will have two local maxima with the same value is 0. We propose an
algorithm based on this property and on the development of the model itself,
and we will test it against paths simulated following the resistance model.

Define the time window W = [t0, tN ] as the time frame in which the detection
will be performed. An initial idea is that for a given stochastic path Zt a resis-
tance is detected if for an integer constant η > 2 and a given real “small” con-
stant S+

0 we can find η local maxima of the path in W , M = {ZM1, . . . , ZMη}
with corresponding times T = {TM1, . . . , TMZM}, such that the maxima are
pairwise closer than S+

0 and M contains the maximum point in the interval
[min(T ), tf ].

We test this idea using Monte Carlo methods, when our parameters are known.
We test it with η = 2, 3. While working with simulated data, we will assume a
value for S+

0 := (exp(σ · ε) − 1) ∗ S0 since in this way the parameter coincides
with the gap given over the resistance level, assuring maximum detection rate.
The parameters used for the simulated paths are presented in Table 1.1

µ σ α ε Resistance Price
0.925 0.15 0.5 0.001 100

Table 1.1: Resistance test simulation parameters

The obtained results are shown in Table 1.2. Although this algorithm has a
good detection rate, defined as the number of found resistance vs. number of
trials error, it has a poor right detection error, defined as the percentage of
times the simulated resistance level was found.

η = 2 η = 3 η = 4
Detection Rate 100% 100% 100%

Right detection rate 4.474% 3.802% 5.2381%
Avg. resistance detected 92.62% 93.46 94.14

Table 1.2: Results for the first detection resistance algorithm

The reason behind the false resistance detection is that the algorithm may iden-
tify small variations or noise around a fixed value as a resistance level. We
are not interested in this kind of resistance detection since it gives no space
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for defining and executing a trading strategy. Therefore, we will introduce one
extra parameter, γ, that asks the path to descend a sufficient amount between
local maxima to account for the trading space, i.e., we apply the definition given
replacing the set M for the set M ′ = {ZM ′1, . . . , ZM ′η} of local maxima such
that ∀i∃ti ∈ [TM ′i , TM

′
i+1] such that |Zti − ZM ′i | < γ

In order to choose an appropriate value of γ for our tests with simulated data,
we may define it as a function of α as γ := (1− exp(−α ·σ))∗S0. The Table 1.3
shows the result of applying the method with the given parameters. The Figure
1.1 shows a detection example, as well as indication lines for the parameters of
detection.

η = 2 η = 3 η = 4
Detection Rate 99.759% 88.75 % 79.798%

Right detection rate 71.256% 99.5475% 100%
Avg. resistance detected 98.66 100.133% 100.173%

Table 1.3: Results for the detection resistance algorithm. The final algorithm
performs much better with respect to false resistances.

Figure 1.1: An example of resistance detection. The detected value and the two
band levels S+

0 (precision) and γ (gamma) are shown

The obtained results show that as long as nice values are used for the variables η,
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S+
0 and γ the algorithm gives both good resistance detection and right detection

rates. A good compromise is choosing the number of touches as two or three.
On section 2.1 we will deal with the problem of choosing this parameters when
they are unknown for real series.

1.2 Parameter Estimation

The optimal resistance strategy developed in [3] is based on the knowledge of
the parameters that characterize the underlying mathematical model. Since in
general this parameters are not known, we need definitions and estimations to
implement the strategy.

The problem of estimating parameters to adjust a financial series to a given
mathematical modeling appears frequently in trading related activities when
mathematical strategies are involved. A typical example is the volatility estima-
tion techniques. The Figure 1.2 shows a measure of volatility of percentage daily
changes for five years U.S. Treasury Notes. This volatility rates are used, for
example, as risk indicators, and are obtained assuming normal random changes
as the ones presented in the Brownian motion.

One interesting thing to note in Figure 1.2 is that the estimated value changes
abruptly from one month to the next one. For example, between May and June
1988, the volatility changed by a factor of three from one month to the next
one, while on September 1998 volatility changed by a factor of four in less than
two months.

Figure 1.2: Volatility of 5yrs U.S. Treasury Notes between 1988 and 2007, mea-
sured as annualized standard deviation of the percentage change in daily price.
Data Source: Chicago Board of Trade

This is just an example that shows that parameters are constantly changing.
This is inconvenient for a mathematical model as the one we are dealing with,
since the model was defined assuming constant parameters. Thus, we have two
opposed situations: parameters are changing and if we assume that they are
constant for a long time we will incur in considerable errors. On the other
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hand, the model is useless for changing parameters.

A compromise between the two competing constraints is using estimation time
windows with a fixed length large enough for allowing nice parameter estimation
and not too much such that parameter change in the series are reflected in the
model. We lack of a standard procedure to follow to define this number, so it
has to be proposed and tested individually depending on the results and the
available information.

Let us assume that we already count with an estimation of the resistance level
(Ŝ0) and the value of the upper band Ŝ+

0 , and that we wish to perform parameter
estimation in the time interval [t0, tN ] . We need to derive results for estimating
ε, σ, α and µ. Let us first consider the estimation of ε. This variable has the
same role for the underlying Brownian motion with drift that the one S+

0 plays
for the price series. Therefore, following [3], it is convenient to define it as

ε̂ :=
1
σ̂

log(Ŝ+
0 /Ŝ0) (1.1)

This lead us to the problem of obtaining a value for σ̂. Recall from Part I of
this work that if we define Xt = 1

σ log(Zt/S0), then Xt satisfies the couple of
stochastic differential equation:

dXt =

{
µdt+ dB̃t for downcrossing or free phases
−µ coth(µ(ε−Xt))dt+ dB̃t otherwise

(1.2)

Where B̃t is a standard Brownian motion. Note that the only random part of
this equation is due to the presence of B̃t. Moreover we know that ∆B̃ti = B̃ti−
B̃ti−1 follows a normal distribution with mean 0 and variance ∆ti = ti − ti−1.

With this in mind, and defining ∆Yti = σ∆Xti = σ(Xti − Xti−1) we propose
the following lemma. Its is a consequence of a similar lemma for independent
identically distributed variables.

Lemma 1. σ̂ :=
√

1
N−1

∑N
i=0(Yti − ȳ)2, is an unbiased estimator of σ, with

ȳ = 1
N

∑N
i=0 Yti .

Similarly we would like to use a simple estimator for µ. Indeed, for the up-
crossing and free phases, (1.2) allows to estimate µ using the sample mean of
∆Xt. However, the dependence of dXt on Xt itself is an obstacle to apply this
kind of solution. Moreover, since we do not know the value of α, we cannot
separate the up-crossing and down-crossing phases.

A simultaneous estimation of µ̂ and α̂ appears therefore as the best solution.
We can then define µ̂ and α̂ as the discretized Least Square Estimators, i.e.
define them as the pair that solves

min
σ,α

(
N∑
i=0

R2
i

)
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where

Ri =

{
∆Xt − µ∆t for downcrossing or free phases
∆Xt + µ coth(µ(ε−Xt))dt otherwise

Note that the discretization approximation is performed using an implicit scheme.
In any case the discretization error may diminish the goodness of the estimation,
and therefore it is convenient to test the results obtained with this methodol-
ogy. For implementing the minimization algorithm, we chose to perform the
minimization in two steps: traversing first the α using a dichotomous search
and then solving the gradient for µ.

As shown in Table 1.4 the results are not very satisfactory. The discretization
errors strongly bias the estimation, particularly the one referring to µ. It is
therefore better to use less information in order to gain accuracy: we will modify
slightly the LSE estimation for using just the up-crossing phase, i.e. we will
define µ̂ as the solution to

min
σ,α

(
N∑
i=0

R
′2
i

)
where

R
′

i =

{
∆Xt − µα∆t for downcrossing or free phases
∆Xt + µα coth(µ(ε−Xt))dt otherwise

and
µα =

1
N ′

∑
(∆Xti′/∆ti′)

Estimated Simulated Bias Relative Bias
Sigma 0.15 ±10−4 0.15 0 0 %
Alpha 0.7197 ± 0.02 0.5 0.22 43.94%

Mu 2.4674 ± 0.12 0.93 1.54 166.94%

Table 1.4: Results when applying the first estimation method. The error are
calculated as twice the standard deviation over the square root of the number
of simulations.

Consequently, we will define µ̂ = µα̂. The propose modification proves to be an
improvement with respect to the previous results with respect to µ as shown
in Table 1.5 . However, as can be deduced from Figure 1.3, there is still an
important dispersion around the values to estimate. Therefore, it is convenient
to check the sensibility of the results obtained using the optimal strategy with
respect to this parameters. This will be performed in Section .

Finally, we must remark that in addition to the estimation of the unknown
parameters, it is necessary to find the probability law followed by the number
of dowcrossings. This issue will be discussed on section 2.1.
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Estimated Simulated Bias Relative Bias
Sigma 0.15 ±10−4 0.15 −2 · 10−4 -0.16 %
Alpha 0.8680 ± 0.02 0.5 0.37 73.61%

Mu 0.7792 ± 0.15 0.93 -0.15 -15.76%

Table 1.5: Results when applying the modified estimation method. The error
are calculated as twice the standard deviation over the square root of the number
of simulations.

1.3 Simulated Data Tests

In the previous sections, we have setup the steps needed for implementing nu-
merically the designed mathematical strategy. It is clear that all the added
sources of error during the implementation will prevent the strategy to be opti-
mal, but our goal is to test if it is still a good strategy, and how does it perform
compare with simpler strategies. To be consistent with the hypothesis assumed
in [3], the experiments will evaluate the logarithm of the wealth obtained in a
fixed time period, when considering a portfolio composed by one risky asset and
one risk-less asset of with fixed return rate. For easy reference we will call the
optimal resistance strategy ResistOpt.

As a benchmark we will choose two simpler strategies: the optimal strategy for
the classical Black and Scholes model (which we will denominate Classical) that
may be found as π = (µ0−r

σ2 ) and a basic technical analysis Tech.An. strategy
resulting from a combination of a five days moving average and a “selling when
resistance is reached” order. The moving average test simply calculates for each
trading day the average of the previous five trading days. If the average is
greater than the last value, the order is to “sell”. Otherwise, the order is to
“buy”. The “sell” and “buy” orders are represented as strategies with all the
current wealth invested either in the risk-less or the risky assets respectively.

We will simulate the stochastic paths for a time interval with two subinter-
vals.The first interval, that we will denominate information time, will be used
to perform the resistance detection and the parameter estimation. The results
of this process will be assumed constant during the second time interval, the
test time, in which the investment is simulated and tested.

The tests we will perform in this section will be run over simulated series with
fixed sets of parameters and downcross law number as shown in Table 1.6. For
reference purposes, the results for a particular chosen set will be named by
parameter and downcross set combination.

All the tests will evaluate the result of 1000 simulations.

1.3.1 Test with all the parameters known

We will first perform two tests assuming that we know the true values of all
the parameters. The objective of this test is to fix references to understand the
utility loss at each step.

First, let us assume an unbounded strategy. This means that we are allowed
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Figure 1.3: Estimation results. Up to the left: The estimation of σ gives good
unbiased results. Up to the right: The estimation of α has its mode in the real
value of 0.5, but the estimation is positively biased. The dispersion is important.
Down: The estimation of µ has a mode and mean above the searched value. The
dispersion is very important.

to borrow any amount of money either by being short on the risky asset or on
the risk-less asset, in order to invest all this amount in the other asset. Our
interest in this test is due to the fact that the strategy was derived under this
assumption.

The results are summarized in Table 1.7. Note that the obtained wealth when
using ResistOpt is more than twice the wealth obtained with Classical. In this
case, the comparison with TechAn is unfair, since we did not give any rule for
short positions in this strategy.

Clearly, the unbounded case is not representative of a real world, given that
in real financial series there are restrictions regarding the maximum value an
investor may actually borrow. In all the remaining comparisons, we will focus
in a more realistic scenario: we will suppose the investor will not borrow at
all. In terms of the allocation strategy, this traduces in restricting that the
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Parameter Value
µ0 0.15
σ 0.15
r 0.02
α 0.5
ε 0.066

Information days 180
Test days 180

N Probability
0 0.1
1 0.2
2 0.3
3 0.2
4 0.1
5 0.1

Table 1.6: Left: Set of parameters for simulated data testing. Right:Probability
law assumed to rule the number of downcrossings

Classical Tech. An. ResistOpt
15.34± 4.13 2.50± 0.45 36.74± 4.54

Table 1.7: Results when all the parameters are known and an unbounded strat-
egy is supposed.

amount invested in the risky or risk-less asset must be non negative. Since we
are assuming self financed investment, this in turn implies these quantities are
between [0, 1].

The obtained results when the restriction over the admissible strategy set is
considered is shown in Table 1.8. Clearly, a great part of the wealth generated
before was due to the possibility of being short. In any case, the ResistOpt
is clearly much profitable than the other two strategies. In the bounded case,
the comparison with the TechAn strategy is possible, but seems to be the less
profitable of the three strategies.

Classical Tech. An. ResistOpt
3.88 ±0.67 2.49 ± 0.48 5.61 ± 0.68

Table 1.8: Results when all the parameters are known and the strategy is sup-
pose to lie in the interval [0, 1]

1.3.2 Test with unknown parameters and known down-
cross law

Let us now consider the case in which some or all the parameters are unknown.
We will split this case in some sub-cases in order to extract as much information
of the simulations as possible.

• Assume first we know the right value of the resistance, as well as the
downcross law. In this case, we want to observe the influence of estimating
the parameters σ, α and µ. the results are shown on Table 1.9. As can be
seen, the advantage of using the optimal strategy reduces in more than
one unity with respect to the previous test. However, with a confidence
of more than 99% the result of applying the ResistOpt strategy is greater
than or equal to the classic strategy.
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Classical Tech. An. ResistOpt
3.75± 0.57 2.40± 0.46 4.42± 0.55

Table 1.9: When parameters are unknown, the ResistOpt strategy still has
better results than the other two, although the margin decreases importantly

• Now, suppose we need to detect first the resistance. We apply the algo-
rithm with γ = 7.79, S+

0 = 1 and two touches. As we can see from the
results in Table 1.10, the final wealth obtained with the ResistOpt strat-
egy reduces even further, but as before is still greater or equal than its
competitors in the 99% of the simulated cases, and strictly better in the
25% of the cases.

Classical Tech. An. Optimal Resist.
3.6 ±0.62 2.16 ± 0.45 4.06 ± 0.60

Table 1.10: Results with resistance detection and unknown parameters.

1.3.3 Test with unknown downcross law

Some interesting tests result from simulating not knowing the exact downcross
law. For the following tests, we will suppose that the estimated downcross law
is one of the following:

N A B
0 0.0 0.5
1 0.0 0.3
2 0.7 0.2
3 0.3 0.0
4 0.0 0.0
5 0.0 0.0

Table 1.11: Probability laws representing errors in the estimation of the down-
crossings law

The coefficients of this probability laws were chosen to represent two types of
errors. As can be seen when comparing Tables 1.6 and 1.11, the set A represents
a downcross law that preserves the mean but with a different structure with
respect to the assumed downcross for simulating, while set B have different
mean and structure and thus represent a bigger miss-parametrization.

• When we suppose that all the parameters and the resistance position are
known and apply different laws than the one simulated, we obtain, as ex-
pected, poorer results. However, when the law A is assumed, the results
are very close to the ones obtained with the right law, while underestimat-
ing or overestimating the number of downcrosses may diminish drastically
the final wealth. The simulation show results as summarized on Table
1.12.
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Estimated Law Classical Tech. An. Optimal Resist.
A 3.48 ±0.61 2.56 ± 0.46 5.16 ± 0.61
B 3.71 ±0.66 2.33 ± 0.47 3.70 ± 0.66

Table 1.12: Results with unknown law and complete parameter information

• If the parameters must be estimated and the resistance detection algo-
rithm is used, it is necessary to sacrifice some more wealth. Table 1.13
summarizes this condition. Note that when the law with mean closer to
the simulated one is used, the results are similar to those obtained with
the full knowledge. The gap closes almost completely when the wrong law
is used.

Estimated Law Classical Tech. An. Optimal Resist.
A 3.11± 0.58 2.37± 0.45 4.22± 0.56
B 3.65 ±0.56 2.46 ± 0.45 3.79 ± 0.55

Table 1.13: Results with unknown law and estimated parameters

1.3.4 Time consumption

A final remark with respect to the time spent during the simulations must be
made. In the case in which is necessary to simulate the path, estimate the
parameters, detect the resistance, apply the strategy and calculate the wealths,
one entire iteration including all this steps takes around 688 ms in a common
laptop with 3GB in RAM and an Intel Core 2 Duo T7250, with the estimation
process being the most costly activity taking around 87.5% of the time per
iteration. Therefore, the algorithm is fast enough to be used even for intra-day
trading.
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Chapter 2

Working with real data

2.1 Resistance detection

On section 1.1 we introduced some parameters to modulate the resistance de-
tection algorithm. Our interest is to fix this parameters in such a way that S+

0

models the small noise around a fixed price value, while γ should represent a
significant change of price to understand that we are dealing actually with two
different values.

Our intention is to define this two parameters as a function of the series itself.
We lack a mathematical argument to define clearly a rule for determining this
parameters since they must be calculated in a first step, even before a resistance
presence is found. Based on several tests performed upon simulated and reals
series, and assume we are detecting the resistance in the interval [t0, tN ] we
propose to define

S+
0 = Q2(∆Zt) (2.1)
γ = max(∆Zt) (2.2)

for for t ∈ [t0, tN ], where Q2 accounts for the median function.

As shown in Table 2.1 This selection of parameters applied to the simulated
data gives better results than the detection without γ (see Table 1.2, but imply
a lost in right detection rate compared with the final results obtained in 1.1.

η = 2 η = 3 η = 4
Detection Rate 99.627% 87.832 % 70.0483 %

Right detection rate 20.47% 57.359% 71.0345 %
Avg. resistance detected 95.42 99.111 100.218

Table 2.1: Results for the detection resistance algorithm with parameter given
by statistics over the data themselves.

On section 2.3 we will present some results of applying the algorithm to different
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real series.

2.2 Downcross law

As was mentioned before, the estimation of the downcross law is a delicate issue
for the success of the algorithm. The simplest way to estimate the downcross
law is to determine the number of times a detected resistance is touched for
historic data. In this case we are supposing that the past behavior will rule the
future behavior of the downcross law.

If the number of available observations is not big enough, in order to compensate
the loss of data one can assume that the downcross law is similar between
observations of the same industry or group. For example, if we need more
data to determine the downcross law of a company like Pfizer (belonging to
pharmaceutics) it would be advisable to include data from other companies
with similar profiles (for example Merck Serono S.A.).

2.3 Tests

We choose some real financial series to perform the tests in this part. To evaluate
the resistance behavior for different kinds of assets, we consider one index (Dow
Jones), one commodity (WTI oil prices) and some stocks coming from different
industries (one energy and finances - General Electric Co., one technology -
IBM, one traditional - Coca Cola Company, and one pharmaceutical - Pfizer).

The used information is freely available on the Internet. In this case we will work
with the adjusted prices available at YAHOO FINANCE. The series are com-
posed by daily close prices for almost 20 years, more specifically from January
2nd 1990 to June 30 2009, representing 4873 observation for each series.

For each of this series we will first get some statistics of resistance finding and
their corresponding number of touches. The idea is that we cannot test the
wealth if the resistance found does not present sufficient resistance persistence.

2.3.1 Resistance finding

In this part, we tested the resistance algorithm in the given financial series
using a window with approximated size of one year. A wider window may be
applied but it poses the danger of forecasting with respect to very old data.
The resistance algorithm uses the parameters given by 2.1 and were obtained
for η = 2, 3, 4, 5, or equivalently for 1,2,3 and 4 downcrosses.

The results are not very encouraging for the implementation of the strategy.
The reason is that for the resistance algorithm to be able to detect something,
one downcross must already pass. Therefore, even for the financial series with
the most persistent resistance amongst the ones tested (GE stock)there is only
a 12.47% of days with two downcross resistance, which traduces in an effective
space for taking profit of the algorithm of just the 6% of observations. Clearly,
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Downcrosses D.J. WTI GE IBM C.Cola Pfizer
0 56.69 52.30 47.13 65.88 53.80 47.74
1 37.92 40.07 35.25 29.23 35.53 48.45
2 4.83 6.43 12.47 4.62 8.82 3.71
3 0.45 1.14 3.93 0.28 1.79 0.11
4 0.11 0.04 1.23 0.00 0.06 0.00

Table 2.2: Observed law of downcrossings according to the used algorithm.
Numbers rounded to the second decimal place

this small space is insufficient for making the strategy appealing compared with
simpler ones.
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Chapter 3

Conclusions and further
research

During the internship we had the opportunity to understand and test an optimal
strategy derived from a mathematical model similar to the Black and Scholes
model but with resistance presence. We were able to implement the derived op-
timal strategy for resistance presence trough the use of simple and fast enough
algorithms. The numerical simulation tests performed to compare the results
with some simpler strategies showed that the resistance optimal algorithm out-
performed the results of the optimal strategy for a classical Black an Scholes
model, and those of applying a moving average with resistance (technical analy-
sis technique), even when simple estimation procedures where used. Therefore,
there is still room to increase the performance by finding estimation algorithms
of higher precision for parameters as the volatility and the drift.

However a chosen set of financial series failed to show a persistent resistance
detection, meaning that although resistance was frequently found, the number
of “touches” associated with a resistance value was low. In practice this means
that the application does not bring significant difference with respect to the
classical Black and Scholes model optimal strategy, limiting the possibilities of
take profit of the new strategy.

To extend the applicability of the strategy, it would be interesting to general-
ize the derived mathematical model to resistance lines in which the resistance
is allowed to show a slope. This model may be applied to a wider range of
financial series, as may be deduced from visual observations made during the
real financial series tests. It is also interesting to complement this study with
the corresponding one for support lines since both measures are complementary
information for deciding an investment strategy.
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Appendix A

C++ Library

In what follows, we present briefly the main functions and routines that support
all the presented work. The basic class for which the functions are define is the
StochasticPath class, which can be seen as an array of times and data.

A.1 Assigning values

• int AssignVec(int n, double* t, double* d, int pos=0)
Assigning a vector of times (*t) and data (*d) to a StochasticPath from
the position pos. n denotes the size of the vectors.

• int AssignOne(int pos, double t, double d)
Assigning the element in the position pos of the StochasticPath

• int AssignOne(double MyTime, double d)
Assigning the data d to the element corresponding to the time MyTime
of the StochasticPath

• int Assign (StochasticPath *B)
Assigning one StochasticPath to another one. Both must have the same
size.

A.2 Basic mathematical operations

• int exp(StochasticPath *A)
Finding the exponential of an StochasticPath: the exp function is applied
to each data

• int log(StochasticPath *A)
Finding the natural logarithm of an StochasticPath: the log function is
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applied to each data

• int operator+= (double k)
Summing a constant term to each data in the StochasticPath

• int operator*= (double k)
Multiplying a constant term to each data in the StochasticPath

• int ScaleTime(double k)
Scaling (Multiplying a constant scale to) the time of an StochasticPath

• int ShiftTime(double k)
Shifting (Adding a constant phase to) the time of an StochasticPath

• int sum(StochasticPath *A, StochasticPath *B, StochasticPath *Ans)
Summing two StochasticPaths. The function receives pointers to both
stochastic paths and to the variable in which the answer will be saved.
The sum is only possible if the StochasticPaths have approximately the
same time vector (a difference less than 10 x FILEPRECISION)

A.3 Extracting information

• int DataCount(double d, double epsilon, int pos ini, int pos fin)
Counting the number of positions for which the StochasticPath has val-
ues between [d-epsilon/2, d+epsilon/2] considering the interval pos ini,
pos fin.

• int FindValue(double dat, int CompType, int IniPos, int FinPos)
Finding the first occurrence in a stochastic path of a value equal to (Type-
IDEqual), greater than (TypeIDGreater), greater than or equal to (Type-
IDGreaterOREq), less than (TypeIDLess) or less than or equal to (Type-
IDLessOREq), in the interval [IniPos, FinPos]

• double GetData(int pos)
Returning the pos-th data in the StochasticPath. If pos is greater than
the size it returns the last available position.

• double GetData (double MyTime)
Returning the data associated with the given time. If the time is not in-
cluded in the StochasticPath an error is produced and zero is returned.
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• int GetPosMax(int IniPos, int FinPos)
Finding the position of the maximum of a stochastic path between the
positions IniPos and FinPos

• int GetPosMin(int IniPos, int FinPos)
Finding the position of the minimum of a stochastic path between the
positions IniPos and FinPos.

• int GetSize ()
Returning the size of the vectors in the StochasticPath.

• double GetTime(int pos)
Returning the pos-ieme time in the StochasticPath. If pos is greater than
the size it returns the last available position.
bool isempty()
Returns true if an StochasticPath is empty

A.4 I/O functions

• int Load(char *MyFileName, char sep=’;’)
Reading the Stochastic Path in the file with complete path MyFileName.

• void Print()
Printing the content of a StochasticPath in the screen

• int Save(char *MyFileName, bool add=false, char sep=’;’)
Writing the Stochastic Path in the file with complete path MyFileName. If
add is false (default) the information is overwritten. It is added otherwise.

A.5 Path generation

• void BM (double t0, double x0, double mu, double sigma, double
tf)
BM generates one path of a Brownian motion between the time t0 and
the time tf, with initial value t0 and n sample points (including extremes).
The jumps are given by a normal distribution with mean mu·dt and vari-
ance sigma2·(t0[i]-t0[i-1]).

• void BouncingBM (double t0, double x0, double Alpha, double Epsilon,
double mu, double tf, int NumDown)
BouncingBM generates one path of the stochastic process of the article,
between the time t0 and the time tf, with initial value t0 and n sample
points (including extremes). The higher level of the resistance is Epsilon
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while the fixed level below is Alpha. The number of downcrossings to
Alpha needed to allow the distribution to go to Epsilon is NumDown.
The jumps are given by a normal distribution with mean rdt and variance
(t0[i]-t0[i-1]).

A.6 Probability distributions

• void rnorm (double x, double mean, double var, int n)
Generating n random numbers normally distributed with mean mean and
variance var, by Marsaglia polar method. They are saved in the vector x

• double ProbGeometric (int n, double par)
Probability function for a variable distributed as geometrically. The pa-
rameter p, the probability of the single event is pointed by par. The
variable is n.

• double CumGeometric (int n, double par)
Cumulative probability function for a variable distributed as geometrically.
The parameter p, the probability of the single event is pointed by par. The
variable is n.

• int GenGeometric (double par, double)
Generate numbers distributed with a geometric law

• double ProbUnif (int n, double initial, double final=NULL)
Probability function for a variable distributed discretely uniform in the
interval [floor(initial),floor(final)]

• double CumUnif (int n, double initial, double final=NULL)
Cumulative probability function for a variable distributed discretely uni-
form in the interval [floor(initial),floor(final)]

• int GenUnif (double initial, double final=NULL)
Generate numbers distributed uniformly in the interval[floor(initial),floor(final)]

• double ProbFinite1(int n, double MySize, double probs)
Probability function of finite support (interval [0, MySize-1]) and proba-
bility values given by the user in the pointer probs

• double CumFinite1(int n, double MySize, double probs)
Cumulative probability function of finite support (interval [0, MySize-1])
and probability values given by the user in the pointer probs

• int GenFinite1(double MySize, double probs)
Generating random numbers following a probability function of finite sup-
port (interval [0, MySize-1]) and probability values given by the user in
the pointer probs
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A.7 Technical analysis tools

• int DownCrossIndex(double data ref, double epsilon, double lower ref,
int pos ini, int pos fin)
Obtaining the index for the events of downcrossings in the given position
interval: this index would be -1 if only upcrossings, 2n if the stochastic
path is downcrossing after touching the lower ref n times and 2n+1 if it
is upcrossing after touching the lower level n times.

• double MovingAv(int right pos, int wsize)
Calculating the moving average of a window of size wsize with right ex-
treme in right pos. On error returns 0.

• bool GetResistence(double& resistance, int Touches, double MyEps,
double MyOut, int pos ini, int pos fin)
Calculating the value of a resistance level using the last part of the data
between pos ini and pos fin with a tolerance of MyEps. The algorithm
search for a given number of Touches that are counted if a data outside
MyOut si encountered between a pair of them. The resistance variable
is returned by reference. Returns TRUE if a value was found or FALSE
otherwise.

• bool GetSupport(double& support, int Touches, double MyEps, double
MyOut, int pos ini, int pos fin)
Calculating the value of a support level using the last part of the data be-
tween pos ini and pos fin with a tolerance of MyEps.The algorithm search
for a given number of Touches that are counted if a data outside MyOut
if encountered between a pair of them. The support variable is returned
by reference. Returns TRUE if a value was found or FALSE otherwise.
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