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Our goal

Has the derived mathematical strategy presented in the first part of
the talk the potential to become a real-life-useful algorithm?

Question

Can we define methods for
estimate the needed parameters
and detecting a resistance level?

Are these methods useful in real
life (precision, speed, data
requirements)?

Is the financial series considered
”sufficiently” modeled by the
resistance equations?

Method

Propose definitions and
algorithms for implementing the
optimal strategy

Test the implementation
extensively with simulated data
and controlled unknowns.

Search and test the algorithm
with real data that show
resistance behavior.



Methodology



What is a resistance level?

Investopedia ”The price at which a stock or market can trade, but not
exceed, for a certain period of time. ”

Farlex Financial Dictionary ”(...) When the security approaches the
resistance level, it is seen as an indication to sell the security,
which will increase the supply, causing the security’s price to
fall back below the resistance level. If there are too many
buyers, however, the security rises above the resistance
level.”



Finding resistance levels

For technical analyst there are many ways to identify a resistance
level (bar chart statistics, trend lines,Fibonacci coefficients,... ).

We identify a resistance level as a level that is a maximum in a
given time interval and is reached more than once during that
interval (up to a given small precision).

Proposed resistance detection algorithm

1 Suppose the resistance line corresponds to the last available data

2 From this point look back for the nearest local maximum

3 If both points are closer than a given precision (Zmin), and there is at
least one point in between below a band level (γ), we count it as a
touch

4 Iterate until the desired number of touches is reached (detected
resistance) or the end of the time window (not detected).



Resistance detection
Example



Resistance detection
Results

To test the algorithm we performed 1000 simulations with the following
parameters:

µ σ α ε Zmin γ Touches

0.925 0.15 0.5 0.001 0.015 7.23 2

Results:

100% detection rate

In 71.05% of the cases the identified resistance level was the modeled
one (100).

Average detected 98.84.



Parameter estimation

The paper’s optimal strategy relies on the knowledge of the parameters
that define a particular instance of the model ( σ, µ0, α and ε).

We have to take into account that

Estimation accuracy will depend in general on the number of points
available or on the time length of the estimation window

But the parameters for real life series are not constant in time.

To try to include both conditions, we will assume constant coefficients
for a moving time window of fixed size.

The size of the time window should be neither to small or too large (the
actual size will depend on each time series).



Parameter estimation

Time window [ti , tf ] with N samples t1, t2, . . . , tN , t1 = ti , tN = tf .
Recalling that ∆Xt (Xt = 1

σ log(Zt/S0)) we define:

ε̂ := 1
σ log(1 + Zmin/S0) where Zmin represents the price precision

(maximum change in value that is perceived by the market as being
the same price).

σ̂ We use the standard deviation of log(Zt/S0). This corresponds to
the usual unbiased least square estimator (LSE) for this case.

µ̂ and α̂. Estimated simultaneously. Define µ̂α as the LSE estimator
for µ in Xt excluding the down-crossing phase, for a fixed α. Then
choose the couple α̂, µ̂α̂ that minimize the square error.
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Parameter estimation

µ̂ and α̂ estimation

Algorithm

1 Identify the minimum of the series in the time window

2 For each α the corresponding µα is calculated simply as

µα =
∑

α/Tα

where Tα is the time that the path spent in reaching 0 from −α, and
the sum includes all the up-crossings.

3 Define the residual as the sum of the squares of the errors between
∆Xt and the ∆X̂t estimated with the researched parameters.

4 Find α that minimizes the residual with an iterative method (Regula
Falsi, dichotomous search, etc.)



Estimation results
σ estimation

mean est. 0.1498
real 0.15

relative bias -0.15 %



Estimation results
µ estimation

mean est. 0.779
real 0.93

relative bias -15.7 %



Estimation results
α estimation

mean est. 0.868
real 0.5

relative bias 73.61 %



Simulated data test

We want to obtain information regarding how well the implementation of
the strategy behaves with respect to the logarithm of the wealth obtained.

Again, we will consider the case of a self financed portfolio consisting of
two assets, one risky and one riskless.

For evaluating different error causes, we test the results when:

The down-cross probability law is known but inexact parametrization
occurs.

We estimate the parameters and the probability law is known

The parameters are known but an inexact down-cross probability law
is used

We estimate the parameters and an inexact down-cross probability is
used.



Simulated data test
Parameter of the simulation

Parameters:

Parameter Value

µ0 0.15
σ 0.15
r 0.02
α 0.5
ε 0.066

Information days 180
Test days 180

Down-crossings law:

N Probabilty

0 0.1
1 0.2
2 0.3
3 0.2
4 0.1
5 0.1

In all the simulations, we will assume we count with the historical
information for information days. The estimated parameters and resistance
will be used for test days. The wealth is evaluated for the latter.



Simulated data tests
Known parameters and resistance

Unbounded strategy: The investment may be any real number (any
short or long position). Avg. time x iteration: 69.88 ms

log(Wealth) in (%)
Classical Tech. An. Optimal Resist.

15.34 ± 4.13 2.50 ± 0.45 36.74 ± 4.54

Bounded strategy: We assume the possible invested amount in the
risky asset belongs to [0, 1]. Avg. time x iteration: 259.57 ms

log(Wealth) in (%)
Classical Tech. An. Optimal Resist.

3.88 ±0.67 2.49 ± 0.48 5.61 ± 0.68



Simulated data tests
Estimated parameters - Known law - Bounded strategy

Known resistance: Assuming the resistance value used for simulating
the path. Avg. time x iteration: 665.36 ms

log(Wealth) in (%)
Classical Tech. An. Optimal Resist.

3.75 ± 0.57 2.40 ± 0.46 4.42 ± 0.55

Detected resistance: Using the detection algorithm. Avg. time x
iteration: 538.22 ms

log(Wealth) in (%)
Classical Tech. An. Optimal Resist.

3.48 ±0.58 2.63 ± 0.47 3.84 ± 0.57



Simulated data tests
Estimated parameters - Unkown law - Bounded strategy

Law with similar mean: Assuming the law is [0, 0, 0.7, 0.3, 0, 0]. Avg.
time x iteration: 567.17 ms

log(Wealth) in (%)
Classical Tech. An. Optimal Resist.

3.11 ± 0.58 2.37 ± 0.45 4.22 ± 0.56

Different law: Assuming the law is [0.5, 0.3, 0.2, 0, 0, 0]. Avg. time x
iteration: 532.96 ms

log(Wealth) in (%)
Classical Tech. An. Optimal Resist.

3.65 ±0.56 2.46 ± 0.45 3.79 ± 0.55



Resistance in real series

As a first step for testing the strategy with real series, we need to find
a financial asset whose price may be well fitted by the given model.

We test using the detection algorithm with different parameters.

It is necessary to find resistance that show an important number of
touches. Otherwise the strategy will not give much information.

To test this situation we use the already presented resistance detection
algorithm in a set of stocks and commodities prices and an index.



Resistance in real series
Some results

We tested different assets using adjusted daily close prices between
January 1990 and June 2009.

In each case we estimated the precision as the 10% percentile of the
absolute change in value, and γ as the average of those changes.

Asset Type 2 Touches (%) 3 Touches (%)

Dow Jones Index 23.73 0.935
WTI (oil) Commodity 38.19 0.234

GE Stock 14.09 1.402
IBM Stock 16.66 0.212

CocaCola Co. Stock 24.5 2.932
Pfizer Stock 19.20 0.595



Conclusions

We were able to implement the derived optimal strategy for resistance
presence.

In the numerical tests run over simulated data, the algorithm
outperformed the results of the optimal strategy for a classical Black
an Scholes model, and those of applying a moving average with
resistance (technical analysis technique).

In particular, we obtain fiarly good results when the parameters are
unknown and there is no prior knowledge of the resistance level.
Improvements in the estimation technoiques may increase the results
even more.

We could not find a financial series which shows enough presence of
resistance to test the algorithm.

Therefore, although the implementation of the algorithm is possible
we believe its use in a real world environment would be limited.



Further research

To extend the applicability of the strategy, it would be interesting to
generalize the derived mathematical model to resistance lines in
which the resistance is allowed to show a slope. This model may be
applied to a wider range of financial series.

Some improvements in the parameter estimation when applied to real
life series may be incorporated to increment the performance (Ex:
considering high and low levels instead of close levels may improve
estimation of some parameters).



C++ library

As part of our work we created a C++ library that helps in the process of
performing numerical experiments for stochastic processes which contains
mainly:

A class for modeling stochastic paths

Function for performing basic operations: shifts and scales in time,
multiplication, addition, exponential, logarithm

Functions for saving and loading

Functions for finding maxima and minima

Implementations of some technical analysis tools: finding resistance,
moving average, parameter estimation
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