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1 Introduction

The term chemotaxis indicates a biological phenomenon describing the change
of motion when a population formed of individuals (such as amoebae, bac-
teria, endothelial cells... ), reacts in response (taxis) to an external chemical
stimulus spread in the environment where they reside. As a consequence,
the population changes its movement toward (positive chemotaxis) higher
concentration of the chemical substance. A possible fascinating issue of a
positive chemotactical movement is the aggregation of the organisms in-
volved to form a more complex organism or body. The basic feature of such
phenomena is the presence of concentration effects possibly leading to non
uniform pattern formation. The basic unknowns in PDE models for chemo-
taxis models are the density of individuals of the population and the con-
centration of the chemoattractant. The first and the most celebrated model
of these phenomena is the Patlak-Keller-Segel model. In this case the basic
assumption is that dynamic of individuals is described by a parabolic equa-
tion coupled with an additional equation for the chemoattractant, chosen to
be elliptic or parabolic, depending on the different regimes to be described.
A large amount of articles and studies analyzed the Patlak-Keller-Segel sys-
tem, see for example [1], [2], [3]. Existence of stationary solutions for the
parabolic Keller-Segel model has been studied for both the simplest model
and the more general one in [4] and [5]. It’s also well known that in two and
three dimensions the solutions can blow-up in finite time, see for example
[6]. However in one space dimension the global existence of solutions for
general initial data has been shown by Osaki and Yagi in [7]. In this work
we are considering a particular case of the following problem:{

∂tρ− µ∂xxρ+ ∂x(ρχ(c)∂xc)− γρ = 0

ε∂tc− ν∂xxc+ βc− αρ = 0
(1)

with ρ(x, t) ∈ <+, c(x, t) ∈ <+, for t ≥ 0, Ω = (a, b) ⊂ <

together with the suitable hypotheses on the parameters:
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α, β, γ, ε, µ, ν ≥ 0
and with the following boundary conditions:

∂ρ
∂n(a) = ∂c

∂n(b) = 0

∂ρ0
∂n (a) = ∂c0

∂n (b) = 0

ρ(0, x) = ρ0(x) ≥ 0, and c(0, x) = c0(x) ≥ 0.

The terms in the first equation of (1) include the diffusion of bacteria, chemo-
tactic drift and division of bacteria. Instead the second equation expresses
diffusion, production and died of attractant.
Naturally according to the choice of the parameters it’s possible to have
different study case with different results.
In this paper we want to focus our attention in the case in which γ = 0, since
we are considering a specific time of observation and the function χ(c) = χ
constant. It’s also well know that if we consider ε = 0 we obtain an elliptic
equation for c.
The aim of this work is to perform an analytical and numerical study of the
system (1) with the particular assumption on the parameters.

2 Weak formulation

We consider smooth solutions, regular enough and we perform the following
analysis {

〈∂tρ, ϕ〉 − µ〈∂xxρ, ϕ〉+ χ〈∂x(ρ∂xc), ϕ〉 = 0

ε〈∂tc, ψ〉 − ν〈∂xxc, ψ〉+ β〈c, ψ〉 − α〈ρ, ψ〉 = 0
(2)

where 〈, 〉 denotes the usual scalar product in L2, namely 〈, 〉 =
∫ b
a uvdx.

Integrating by parts we obtain:
∫ b
a ∂tρϕdx− µϕ∂xρ|

b
a + µ

∫ b
a ∂xρ∂xϕdx

+χϕρ∂xc|ba − χ
∫ b
a ρ∂xc∂xϕdx = 0

ε
∫ b
a ∂tcψdx− νψ∂xc|

b
a + ν

∫ b
a ∂xc∂ψ + β

∫ b
a cψdx− α

∫ b
a ρψdx = 0

(3)

And finally using boundary conditions:
∫ b
a ∂tρϕdx+ µ

∫ b
a ∂xρ∂xϕdx = χ

∫
Ω ρ∂xc∂xϕdx

ε
∫ b
a ∂tcψdx+ ν

∫ b
a ∂xc∂xψdx = α

∫ b
a ρψdx− β

∫ b
a cψdx

(4)
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We can rewrite this expressions in the convenient way:{
〈∂tρ, ϕ〉+ µ〈∂xρ, ∂xϕ〉 − χ〈ρ∂xc, ∂xϕ〉 = 0

ε〈∂tc, ψ〉+ ν〈∂xc, ∂ψ〉+ β〈c, ψ〉 − α〈ρ, ψ〉 = 0
(5)

Therefore we consider the functional space H1 and we seek ρ, c ∈ H1 such
that for all ϕ,ψ ∈ H1.

3 Finite element method

Let {Vh}h≥0 be a family of approximating subspace of H1, consisting of
piecewise polynomials, and let {Th}h≥0 be a partition of (a, b) made of in-
tervals (xi, xi+1), i = 1, ..., N with h = maxi(xi+1 − xi).

We assume Th regular and define Vh = {ϕ,ψ ∈ H1;ϕ|T , ψ|T ∈ P (T ), T ∈
Th} with T a generic interval (xi, xi+1) and P the family of polynomial of
degree k.
The finite element solution of (5) consist in seeking a solution ρh, ch ∈ Vh of
the following problem:{

〈∂tρh, ϕ〉+ µ〈∂xρh, ∂xϕ〉 − 〈ρhχ∂xch, ∂xϕ〉 = 0

ε〈∂tch, ψ〉+ ν〈∂xch, ∂xψ〉+ β〈ch, ψ〉 − α〈ρh, ψ〉 = 0
(6)

for all ϕ,ψ ∈ Vh.

4 Stability estimate

4.1 L2-energy estimate

Following [8] we consider ϕ = ρh ∈ Vh in the first equation of (6)

〈∂tρh, ρh〉+ µ〈∂xρh, ∂xρh〉 − χ〈ρh∂xch, ∂xρh〉 = 0 (7)

and so we obtain:

1
2
d

dt
‖ρh‖2L2 + µ‖∂xρh‖L2 − χ〈ρh∂xch, ∂xρh〉 = 0 (8)

Then considering ψ = ch in the second equation of (6) we have:

ε〈∂tch, ch〉+ ν〈∂xch, ∂xch〉+ β〈ch, ch〉 − α〈ρh, ch〉 = 0 (9)

and
ε

2
d

dt
‖ch‖2L2 + ν‖∂xch‖2L2 + β‖ch‖2L2 − α〈ρh, ch〉 = 0 (10)
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We sum (8) and (10) to obtain

1
2
d

dt
(‖ρh‖2L2 + ε‖ch‖2L2) + µ‖∂xρh‖2L2 + ν‖∂xch∂‖2L2 + β‖ch‖2L2

= χ〈ρh∂xch, ∂xρh〉+ α〈ρh, ch〉 (11)

Using Cauchy-Schwartz and Young inequalities we have that

α〈ρh, ch〉 ≤ α‖ρh‖2L2‖ch‖2L2 ≤
α

2δ1
‖ρh‖2L2 +

αδ1

2
‖ch‖2L2

for δ1 << 1 and for the non linear term

χ〈ρh∂xch, ∂xρh〉 ≤ χ‖ρh∂xch‖2L2‖∂xρh‖2L2 ≤
χ

2δ2
‖ρh∂xch‖2L2 +

χδ2

2
‖∂xρh‖2L2

for δ2 << 1. Then we can rewrite the equation (11) as

1
2
d

dt
(‖ρh‖2L2 + ε‖ch‖2L2) +

(
µ− χδ2

2

)
‖∂xρh‖2L2 + ν‖∂xch‖2L2 +

(
β − αδ1

2

)
‖ch‖2L2

≤ χ

2δ2
‖ρh∂xch‖2L2 +

α

2δ1
‖ρh‖2L2

Since we can consider

χ

2δ2
‖ρh∂xch‖2L2 ≤

χ

2δ2
‖ρh‖2L∞‖∂xch‖2L2 (12)

we obtain

1
2
d

dt
(‖ρh‖2L2 + ε‖ch‖2L2) +

(
µ− χδ2

2

)
‖∂xρh‖2L2 +

(
ν − χ

2δ2
‖ρh‖2L∞

)
‖∂xch‖2L2

+
(
β − αδ1

2

)
‖ch‖2L2 ≤

α

2δ1
‖ρh‖2L2 (13)

it holds if
‖ρh‖2L∞ ≤

ν2δ2

χ
(14)

To be sure that the solution doesn’t blow up we consider it only for short
time and initial data very small, so we assume that
|ρ(0)|L∞ ≤ ε
with ε small enough and we define the set
I = {t : |ρ|L∞(t) < 2νδ2

χ }.
For all t ∈ I we have that (13) holds and this allows us to write

1
2
d

dt
(‖ρh‖2L2 + ε‖ch‖2L2) ≤ α

2δ1
(‖ρh‖2L2 + ε‖ch‖2L2) (15)
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Solving this inequality we have

‖ρh‖2L2 + ε‖ch‖2L2 ≤ (‖ρ(0)‖2L2 + ε‖c(0)‖2L2)exp
αt
2δ1 (16)

Considering that

‖ρh‖2L∞ ≤
1
h
‖ρh‖2L2 ≤

1
h
‖ρh‖2L2 + ε‖ch‖2L2 ≤

1
h

(‖ρ(0)‖2L2 + ε‖c(0)‖2L2)exp
αt
2δ1 (17)

using (14) we obtain the following time estimation for which the solution
remain bounded

t < ln
(

2νδ2

χ
h

1
‖ρ(0)‖2

L2 + ε‖c(0)‖2
L2

)
2δ1

α
(18)

4.2 Error estimates and convergence results

Following [9] we consider the equations for the errors between the analytical
and the numerical solution:

Eρ = ρ− ρh (19)
Ec = c− ch (20)

that is for all ϕ,ψ ∈ Vh ⊂ H1{
〈∂tEρ, ϕ〉+ µ〈∂xEρ, ∂xϕ〉 − χ〈ρ∂xc− ρh∂xch, ∂xϕ〉 = 0,

ε〈∂tEc, ψ〉+ ν〈∂xEc, ∂xψ〉+ β〈Ec, ψ〉 − α〈Eρ, ψ〉 = 0
(21)

In the following, we introduce the standard arguments to get error estimates
for finite element methods, based on the idea of splitting the errors into two
parts the consistency errors ηρ, ηc and the stability errors θρ, θc, respectively
for the density and the concentration, namely:

Eρ = ρ− ρh = (ρ−Πhρ) + (Πhρ− ρh) = ηρ + θρ (22)

Ec = c− ch = (c−Πhc) + (Πhc− ch) = ηc + θc (23)

where Πh is the Elliptic Projection operator such that

〈∂xΠhv, ∂xξ〉 = 〈∂xv, ∂xξ〉 (24)

for all v ∈ H1, ξ ∈ Vh.
This operator allows us to write that for ρ and c smooth enough we have
that ηρ and ηc satisfy the approximation properties:

‖ηρ‖+ h
1
2 ‖∂xηρ‖ ≤ Csthr‖ρ‖ (25)

‖∂tηρ‖ ≤ Csthr‖ρ‖ (26)

for ρ ∈ Hr.
Naturally the same inequalities are valid for ηc only replacing ρ with c. What
we want to do is to find an estimation for the stability error.
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4.3 L2 error estimates for the error

We start considering the weak formulation satisfied by the stability error θc,
that is for all ψ ∈ Vh:

ε〈∂tθc, ψ〉+ν〈∂xθc, ∂xψ〉+β〈θc, ψ〉 = −ε〈∂tηc, ψ〉−β〈ηc, ψ〉+α〈Eρ, ψ〉 (27)

We take ψ = θc ∈ Vh in (27) to get:

1
2
d

dt
‖θc‖2 + ν‖∂xθc‖2 + β‖θc‖2 = −ε〈∂tηc, θc〉 − β〈ηc, θc〉+ α〈Eρ, θc〉

≤ ε‖∂tηc‖‖θc‖+ β‖ηc‖‖θc‖+ α‖ηρ + θρ‖‖θc‖ ≤ (ε‖∂tηc‖+ β‖ηc‖+ α‖ηρ + θρ‖)‖θc‖

Let t∗ such that ‖θc(t∗)‖ = maxt≥0‖θc(t)‖, we integrate in [0, t∗] to get:

ε

2
‖θc(t∗)‖+ ν

∫ t∗

0
‖∂θc(t)‖2dt+ β

∫ t∗

0
‖θc(t)‖2dt

≤ ε

2
‖θc(0)‖2 +

∫ t∗

0
(ε‖∂tηc(t)‖+ β‖ηc(t)‖+ α‖ηρ(t) + θρ(t)‖)‖θc(t)‖dt

≤

[
ε

2
‖θc(0)‖+

∫ t∗

0
(ε‖∂tηc(t)‖+ β‖ηc(t)‖+ α‖ηρ(t) + θρ(t)‖)dt

]
‖θc(t∗)‖

In a first attempt we can deduce that:

‖θc(t∗)‖ ≤ ‖θc(0)‖+ C1

∫ t∗

0
(‖∂tηc(t)‖+ ‖ηc(t)‖+ ‖ηρ(t) + θρ(t)‖)dt

with C1 = 2C1(1, βε ,
α
ε ) ≥ 0.

Finally, using (25) and (26) we can conclude that

‖θc(t)‖ ≤ ‖θc(0) + C1C
sthr

∫ t∗

0
(‖∂tc‖+ ‖c‖)dt+ C1

∫ t∗

0
‖ηρ(t) + θρ(t)‖dt

≤ Chr + C1

∫ t

0
‖(ρ− ρh)(s)‖ds (28)

where C = C(t, c0, ch(0), C1, C
st, c, ∂tc, r,Ω).

Using the following properties of the Elliptic Projection: ‖θc(0)‖ ≤ Csthr‖c0‖

‖∂xθc(0)‖ ≤ Csthr−1‖c0‖

‖ηc(t)‖ ≤ Csthr‖c0‖+ Csthr
∫ t

0 ‖∂tc(s)‖ds

‖∂tηc(t)‖ ≤ Csthr‖∂tc(t)‖
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and the inequality (29) we obtain the approximation properties for the sta-
bility error θc. Recalling that Ec(t) = ηc(t) + θc(t) and ‖(c − ch)(t)‖ ≤
‖ηc(t)‖ + ‖θc(t)‖ and the approximation properties (25), (26) and (29) for
ηc(t) and θc(t) we get:

‖(c− ch)(t)‖ ≤ Csthr‖c(t)‖+ ‖θc(0)‖

+C1C
sthr

∫ t∗

0
(‖∂tc(t)‖+ ‖c(t)‖dt+ C1

∫ t∗

0
‖(ρ− ρh)(t)‖dt

together with the estimate

‖θc(0)‖ = ‖Πhc(0)−ch(0)‖ ≤ ‖Πhc0−c0‖+‖c0−ch(0)‖ ≤ Csthr‖c0‖+‖c0−ch(0)‖

Therefore finally we have:

‖(c− ch)(t)‖ ≤ ‖c0 − ch(0)‖+ Csthr(‖c0‖+ ‖c(t)‖)

+C1C
sthr

∫ t∗

0
(‖∂tc(t)‖+ ‖c(t)‖)dt+ C1

∫ t∗

0
‖(ρ− ρh)(t)‖dt (29)

where the left hand side is bounded in terms of initial data.
We consider now the problem of deriving error estimates for the density’s

error (22).
From the weak formulation and the finite element formulation of the density
and using the definition of the Elliptic Projection, we have that for all ϕ ∈ Vh

〈∂tθρ, ϕ〉+ µ〈∂xθρ, ∂xϕ〉

= −〈∂tηρ, ϕ〉+ χ〈ρ∂xc, ∂ϕ〉 − χ〈ρh∂xch, ∂xϕ〉

= −〈∂tηρ, ϕ〉+ χ〈ρ∂xc− ρh∂xch, ∂xϕ〉

We take ϕ = θρ ∈ Vh to get

1
2
d

dt
‖θρ‖2 + µ‖∂xθρ‖2

= −〈∂tηρ, θρ〉+ χ〈ρ∂xc, ∂xθρ〉 − χ〈ρh∂xch, ∂xθρ〉

≤ (‖∂tηρ‖+ χ〈ρ∂xc− ρh∂xch, ∂xθρ〉

Then similar arguments using for θc let us to conclude.

5 Discretisation in time: Euler Implicit

In this section we consider the discretisation with respect to time which
lead us to implement a numerical method to compute the solution of the
problem.
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5.1 Simplified model

In a first attempt we study a simplified version of our model considering our
function χ = 1. We rewrite the system (1) using the Euler Implicit scheme:{

ηρn+1 − µ∂xxρn+1 + ∂x(ρn+1∂xc
n+1) = ηρn + fn+1

εηcn+1 − ν∂xxcn+1 + βcn+1 − αρn+1 = ηεcn,
(30)

where η = 1/∆t and the function f denotes the right hand side.
Now we consider the weak formulation of the problem taking ϕ ∈ H1{

η〈ρn+1, ϕ〉+ µ〈∂xρn+1, ∂xϕ〉 − 〈ρn+1∂xc
n+1, ∂xϕ〉 = 〈ηρn + fn+1, ϕ〉

(εη + β)〈cn+1, ϕ〉+ ν〈∂xcn+1, ∂xϕ〉 − α〈ρn+1, ϕ〉 = 〈ηεcn, ϕ〉
(31)

and then we substitute in it ρ =
∑N

j=1 ρjϕj and c =
∑N

j=1 cjϕj to obtain:
η
∑N

j=1 ρ
n+1
j 〈ϕj , ϕi〉+ µ

∑N
j=1 ρ

n+1
j 〈ϕ′j , ϕ′i〉 − 〈

∑N
k=1 ρ

n+1
k ϕk

∑N
j=1 c

n+1
j ϕ′j , ϕ

′
i〉

= η
∑N

j=1 ρ
n
j 〈ϕj , ϕi〉+ 〈fn+1, ϕi〉

(εη + β)
∑N

j=1 c
n+1
j 〈ϕj , ϕi〉+ ν

∑N
j=1 c

n+1
j 〈ϕ′j , ϕ′i〉 − α

∑N
j=1 ρ

n+1
j 〈ϕj , ϕi〉 = ηε

∑N
j=1 c

n〈ϕj , ϕi〉
(32)

Introducing the Stiffness matrix K = 〈ϕ′j , ϕ′i〉, the Mass matrix M = 〈ϕj , ϕi〉
and the Triple matrix T = 〈ϕkϕ′j , ϕ′i〉 and considering the vector
u = [ρ1, ..., ρN , c1, ...., cN ] we have

η
∑N

j=1Miju
n+1
j + µ

∑N
j=1Kiju

n+1
j −

∑N
k=1

∑N
j=1 c

n+1
j Tijku

n+1
k un+1

j+N

= η
∑N

j=1Miju
n
j + bni

(εη + β)
∑N

j=1Miju
n+1
j+N + ν

∑N
j=1Kiju

n+1
j+N − α

∑N
j=1Miju

n+1
j = ηε

∑N
j=1Miju

n
j+N

(33)
where bni = 〈fn+1, ϕi〉. To deal with the non linear term we have two
possibility either linearising around uk or linearising around uj+N .
FIRST CASE: linearization around uk
Using a matricial form we can rewrite our system in the form AU = B,
where A is a 2N × 2N matrix and U and B are two 1× 2N vectors:

A =
(
ηM + µK T̃
−αM (εη + β)M + νK)

)
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with T̃ = −
∑N

k=1 Tijku
n
k .

U =

 un+1
1
...

un+1
2N

 B =



ηMun1 + bni
...

ηMunn + bni
ηεMunn+1

...
ηεMun2N


SECOND CASE: linearization around uj+N
We use the same form of before and the only thing to change is the matrix
A which is in this case

A =
(
ηM + µK + T̃ 0
−αM (εη + β)M + νK)

)
with T̃ = −

∑N
j=1 Tijku

n
j+N .
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6 Numerical results and conclusions perspectives

To have some numerical results we implement a scilab program constructed
to solve the Keller-Segel model for chemotaxis. Of course to realize this
program we use all the previous considerations.
The algorithm consists mainly in the following steps:
-we define our initial data and the constant of the problem;
-we compute an exact solution for the problem and the respective right hand
side;
-we define the mesh and we compute the matrix related to our system;
-we implement the Implicit Euler scheme in time to find the solution.
Using this algorithm first we can show the convergence of the constant so-
lutions in the following results
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Figure 1: rho
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Figure 2: c

We can see in these pictures that there exists a perfect convergence for
the constant solutions and these results are valid for every choice of the time
step and the space step.
Then we do the same for non constant solutions and also in this case we
obtain a good convergence between the exact and the numerical solutions,
which can become perfect for particular values of our parameters. According
to how we deal with the non linear term we consider separately the two
different case.
First case: linearisation around uk
We start our analysis considering the plot for the following value of the
parameters:
-time step dt = 4 ∗ 10−4

-mesh N = 35
-ε, µ, ν = 1 and α, β, γ = 0
and we obtain:
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Figure 3: case1

As we can see the convergence is not very good in particular for c(x, t).
So first we try to change the value of the time step and we put dt = 4∗10−5

to obtain:
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Figure 4: case2
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but in fact with this change we see only an improvement on the conver-
gence for ρ but not on c. So we try to change the other parameters N,Nt

but as we can see the plot doesn’t change a lot:
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Figure 5: case3

We obtain the same results considering other values for the constants of
our problem
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Figure 6: case4
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Since in all this plot what we can see is that for the convergence of ρ
there are no problem but for c the result is not so good in fact we have
that the amplitude of the exact solution for c is too big with respect the
amplitude of the numerical one, we think to reduce the amplitude of the
exact solutions, putting a constant a ≤ 1 in its expression.
So we start to choose a = 0.5 and we obtain:
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Figure 7: case5
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Since also here we don’t see any improvement we continue to reduce the
value of a, so we put a = 0.05 in figure related to case55, then a = 0.005 in
case6 and at the end a = 0.0005 for which we obtain the exact convergence
in case7.
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Figure 8: case55
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Figure 9: case6
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Figure 10: case7
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Figure 11: case8

We follow exactly the same procedure in the second case with linearisa-
tion around uj+N and as we can see in the last picture we obtain the same
convergence.
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This work is manly an analytical study of a particular case of the Keller-
Seghel model for chemotaxis. After a huge documentation on the different
model for chemotaxis we chose to focus our interest in a one dimensional
case, that allows us to use some particular properties of the Sobolev spaces,
and we consider from the beginning some particular hypotheses on the dif-
ferent parameters present in the equation. Under our assumptions we prove
the estimate of the L2 energy and of the error between the analytical and
the numerical solution and we show the numerical convergency of constant
and non constant solutions for different values of the parameters. Naturally
what we did in this paper can be extended in more general case, removing
some of our assumption and considering other hypotheses. We limited our
study in the one dimensional case but with similar arguments we can also
study the behaviour of the system in higher dimensions.
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