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WHAT IS MULTTIOBJECTIVE
OPTIMIZATION?




WHY IS I'T INTERESTING?

\9/

’¢ In brain, there are several regions with several
functions. 'T'hey work together to control the body.
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pictures from : http://scienceblogs.com/purepedantry/2007/10/ocular dominance columns and t.php
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MULTIOBJECTIVE OPTIMIZATION IS
VERY USEFUL IN MANY FIELDS.




Study multiobjective optimization 1n general.

< 'Iry to apply MOPs to make some case studies in
neuroscience.
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HOW DO WE WORK?

Main references:

NONLINEAR MULTTIOBJECTIVE
OPTIMIZATION
(Kaisa M. Miettinen, 1999)

MATHEMATICAL PROBLEMS IN
IMAGE PROCESSING
(G.Aubert and P.Kornprobst, 2002)
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Along the way
e Calculus of variations
e Difterential geometry
e Multiobjective optimization with
equilibrium constraints
* Bilevel optimization
* Evolutionary mutiobjective
optimization

Case study:
Ambrosio-Tortorell

Image segmentation
SR




MULTIOBJECTIVE OPTIMIZATION
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We call S the ”feasible region”
and Z = f(5) the ”feasible objective region”.




PARETO OPTIMAL

Pareto optimality : An decision vector x* € S is Pareto optimal if there
does not exist another decision vector x € S such that f;(z) < f;(z*) for all
SR e R and S i R s o atkl castrontin d exeys

Weak Pareto optimality : An objective vector z* is weakly Pareto optimal

if there does not exist another decision vector z € S such that f;(y) < f;(x) for
Il B

An objective vector z* is Pareto optimal(weakly Pareto optimal) if the de-
cision vector corresponding to it is Pareto optimal.
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EXAMPLE

<

weaksPareto
optimal set

7

Pareto
optimal set
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Pareto optimal
Set

The decision maker select the final solution from
the Pareto optimal set.
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METHODS

Multiobjective Optimization
Approaches
‘ A priori I I Progressive / Sequential I A posteriori

Aggregation based Interactive Pareto based

& — constraint Lexicographic

Goal Attainment

chart from : http://www.emeraldinsight.com/fig/1740240307004.png
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EPSILON-CONSTRAINT METHOD

T ZE SR RS )
subject to (g1(x),...,grx(x)) <0

e-Constraint method:

minimize f;(x)
subijeciitonign ey (a0
aniiel At caiteierlll mes




KARUSH-KUNH-TUCKER CONDITIONS APPLIED
10O THE EPSILON-CONSTRAINT PROBLEM

Let the objective and the constraint functions be continuously differentiable
at £* which is regular point of the constraint problem of the e-constraint prob-
lem.A necessary condition for £* to be a solution of the e-constraint problem is
that there exist vector 0 < X\ € R¥~! and 0 < 1 € R such that
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CASE STUDY

% Given Q€ R?
¢ Image as a function u: € — R

# u(z,y) := Intensity




IMAGE SEGMENTATION

Outputs

Image segmentation s typically used to locate objects and
boundaries (lines, curves, etc.) in umages.
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MUMFORD-SHAH SEGMENTATION
FUNCTIONAL

BuswB)=a [ [ |Vuldudy+ 5 [ [ (u-gPdsdy+ 5]
R\B R

where

R is connected, bounded, open set of R?
B is a curve segmenting R

|B| is the length of B

g is the feature intensity

u is the smoothed image C R? \ B

a, (3 are the weights.

The minimizer u of this functional is a smooth approximation of g in each
sub-domain segmented by B.
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AMBROSIO-TORTORELLI EDGE-
S TRENGTH FUNCTIONAL

R // fa(1 — v)2||Vul? + Blu — g)?

where

R is connected, bounded, open set of R?
g is the feature intensity

u 1s the smoothed image

v 1s a continuous variable

«, 3, p are the weights.
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AMBROSIO-TORTORELLI
FUNCTIONAL

2
U
oy / / {1 = o Vul + BEEGE + £1Vol + - dady

where

R is connected, bounded, open set of R?
g is the feature intensity

u 1s the smoothed image

v 1s a continuous variable

a, 3, p are the weights.
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AMBROSIO-TORTORELLI
FUNCTIONAL

2
U
B = / / (BRI + 5~ )* + SIVIP + 5} dudy

where

R is connected, bounded, open set of R?
g is the feature intensity

u 1s the smoothed image

v 1s a continuous variable

a, 3, p are the weights.
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GOAL

Find (u*,v*) which minimizes E a7 (u,v) that is

minimize Far(u,v)
subject to (u,v) € WH2(R)

which is ” Variational optimization problem”.
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> TANDARD APPROACH

minimize /RF(x,y(a:),y’(x))d:B

Necessary condition for y to be the
minimum : the Euler-LLagrange equation

A RO e RIS OV R (e 1)

dr | oy’ ) oy




GRADIENT DESCEN'T
EQUATION

0
a—?; = —2Vv - Vu+ (1 —v)Vu




ALTERNATIVE IDEA

Ear(u,v) = / a1 = Vul® + Bu—g)°

Split and solve

// (1 — v) QHVuH2dxdy

UU
(1, v) // Bu—g)* + £ Vo

2p

minimize {F1(u,v), Fa(u,v)}
subject to (u,v) € (WH2(R))?

dxdy




APPLY TO THE AMBROSIO-TORRORELLI
FUNCTIONAL

e-Constraint problem

minimize F1(u,v)

subject to Fa(u,v) < €

Remark : T he Ambrosio-"lortorells functional 1s defined on

continuous domains but we are going to apply the epsilon-
constraint method which 1s for vector domans.
Now I am considering the discretized images as vectors.
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KARUSH-KUHN-TUCKER
CONDITION

Fi(u,v) + AM(E2(u,v) — €)

2(El (w,v) + AE3(u,v) — Ae) =0

ou

%,
= (B1(u, ) + AE2(u, v) — Ae) = 0

AMEs(u,v) —€)=0and XA > 0




GRADIENT DESCENT
EQUATIONS

ou , 2
Vit div(a(l — v)*Vu) — B(u — g)

OV 200
— V20 = vl
= Vh+ (10| Vul -

| |5 a(u—g)div((1 — v)*Vu)dzdy
e—ffR Vo2 + & dady

1)
%

s —

We implement into computer by finite difference schemes.
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THE EXPERIMENTS

We do experiments on two 1mages, one 1s an 1mage
with simple detail and another 1s more complicating.
T'he parameters are fixed except for epsilon.
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RESULTS

Parameters : a = 0.10, 5 = 0.001, p = 1.0, number of iterations = 10

A0 ip Ap ap D

standard alternatie alternate alternate alternative

epsilon=0.05  epsilon=0.10 epsilon=0.15 epsilon=0.20
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RESULTS

Parameters : o = 0.10, 8 = 0.001, p = 1.0, number of iterations = 300

standard alternative alternative alternative alternative

epsilon = 0.00  epsilon = 0.10  epsilon = 0.15  epsilon = 0.20
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DISCUSSION

We haven’t designed a good measurement to compare

the efficiency

between the standard approach and the

alternative ap

broach yet.

T'he results can be observed by horizontal section
which the solutions from standard approach seem to

be smoother.

We have some reformations from continuous domains
to vector domains which have not been checked the
availability well. 'The results are calculated
approximately.
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FUTURE WORK

Iry to apply other methods and problem:s.

We have to study multiobjective optimization 1n
infinite dimensional domains. Where most
neuroscience problems locate 1n.

T'he evolutionary algorithm for multiobjective
optimization 1s also promising to be apply 1n this field.
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