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WHAT IS MULTIOBJECTIVE 
OPTIMIZATION?

max 
profit

min 
cost

max 
performance
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WHY IS IT INTERESTING?

In brain, there are several regions with several 
functions. They work together to control the body.

pictures from : http://scienceblogs.com/purepedantry/2007/10/ocular_dominance_columns_and_t.php
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MULTIOBJECTIVE OPTIMIZATION IS 
VERY USEFUL IN MANY FIELDS. 

MOPs
★ Product and process design
★Finance
★Aircraft design
★Oil and gas industry
★Automobile design

How about 
NEUROSCIENCE?
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PLAN

Study multiobjective optimization in general.

Try to apply MOPs to make some case studies in 
neuroscience.
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HOW DO WE WORK?

Main references: 

NONLINEAR MULTIOBJECTIVE 
OPTIMIZATION 

(Kaisa M. Miettinen, 1999)

MATHEMATICAL PROBLEMS IN 
IMAGE PROCESSING

(G.Aubert and P.Kornprobst, 2002)

Case study:
Ambrosio-Tortorelli 
image segmentation 

Along the way
• Calculus of  variations
• Differential geometry
• Multiobjective optimization with 
equilibrium constraints
• Bilevel optimization
• Evolutionary mutiobjective 
optimization
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MULTIOBJECTIVE OPTIMIZATION

fi : Rn → R, i = 1, . . . , k

gi : Rn → R, i = 1, . . . ,m

minimize f(x) = (f1(x), . . . , fk(x))
subject to x ∈ S = {x ∈ Rn|g(x) = (g1(x), . . . , gm(x)) ≤ 0)}

We call S the ”feasible region”
and Z = f(S) the ”feasible objective region”.
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PARETO OPTIMAL

Pareto optimality : An decision vector x∗ ∈ S is Pareto optimal if there
does not exist another decision vector x ∈ S such that fi(x) ≤ fi(x∗) for all
i = 1, . . . , k and fj(x) < fj(x∗) for at least on index j.

Weak Pareto optimality : An objective vector z∗ is weakly Pareto optimal
if there does not exist another decision vector z ∈ S such that fi(y) < fi(x) for
all i = 1, . . . , k.

An objective vector z∗ is Pareto optimal(weakly Pareto optimal) if the de-
cision vector corresponding to it is Pareto optimal.
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EXAMPLE

S
Zz1

z2

z1

x1

x2

x3

x1

Pareto 
optimal set

weak Pareto 
optimal set
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GENERAL PROCEDURE

Pareto optimal 
set

I have to 

select one of  

theses 

solutions.

The decision maker select the final solution from 
the Pareto optimal set.
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METHODS

chart from : http://www.emeraldinsight.com/fig/1740240307004.png
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EPSILON-CONSTRAINT METHOD

minimize (f1(x), . . . , fk(x))
subject to (g1(x), . . . , gk(x)) ≤ 0

ε-Constraint method:

minimize fl(x)
subject to (g1(x), . . . , gm(x)) ≤ 0
and fj(x) ≤ εj for all j "= l
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KARUSH-KUNH-TUCKER CONDITIONS APPLIED 
TO THE EPSILON-CONSTRAINT PROBLEM

Let the objective and the constraint functions be continuously differentiable
at x∗ which is regular point of the constraint problem of the ε-constraint prob-
lem.A necessary condition for x∗ to be a solution of the ε-constraint problem is
that there exist vector 0 ≤ λ ∈ Rk−1 and 0 ≤ µ ∈ R such that

(1) ∇fl(x∗) +
∑n

j=1,j #=l λj∇(fj(x∗)− εj) +
∑m

i=1 µ∇g(x∗) = 0

(2) λj(fj(x∗)− εj) = 0 for all j %= l, µigi(x∗) = 0 for all i = 1, . . . ,m
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CASE STUDY

Given 

Image as a function u : Ω→ R

u(x, y) := Intensity

Ω ∈ R2

Thursday, 23 July 2009



IMAGE SEGMENTATION

+

Input Outputs

Image segmentation is typically used to locate objects and 
boundaries (lines, curves, etc.) in images.
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MUMFORD-SHAH SEGMENTATION 
FUNCTIONAL

EMS(u, B) = α

∫ ∫

R\B
‖∇u‖2dxdy + β

∫ ∫

R
(u− g)2dxdy + |B|

where
R is connected, bounded, open set of R2

B is a curve segmenting R
|B| is the length of B
g is the feature intensity
u is the smoothed image ⊂ R2 \ B
α,β are the weights.

The minimizer u of this functional is a smooth approximation of g in each
sub-domain segmented by B.
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AMBROSIO-TORTORELLI EDGE-
STRENGTH FUNCTIONAL

EAT (u, v) =
∫ ∫

R
{α(1− v)2‖∇u‖2 + β(u− g)2 +

ρ

2
‖∇v‖2 +

v2

2ρ
}dxdy

where
R is connected, bounded, open set of R2

g is the feature intensity
u is the smoothed image
v is a continuous variable
α,β, ρ are the weights.
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GOAL

Find (u∗, v∗) which minimizes EAT (u, v) that is

minimize EAT (u, v)
subject to (u, v) ∈ W 1,2(R)

which is ”Variational optimization problem”.
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STANDARD APPROACH

Necessary condition for y to be the 
minimum : the Euler-Lagrange equation

minimize
∫

R
F (x, y(x), y′(x))dx

d

dx

[
∂F (x, y, y′)

∂y′

]
=

∂F (x, y, y′)
∂y
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GRADIENT DESCENT 
EQUATION

∂u

∂t
= −2∇v ·∇u + (1− v)∇2u− β(u− g)

α(1− v)

∂v

∂t
= ∇2v − v

ρ2
+

2α

ρ
(1− v)‖∇u‖2

∂u

∂n
|∂R = 0,

∂v

∂n
|∂R = 0

Fix v,

Fix u,
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ALTERNATIVE IDEA

EAT (u, v) =
∫ ∫

R
{α(1− v)2‖∇u‖2 + β(u− g)2 +

ρ

2
‖∇v‖2 +

v2

2ρ
}dxdy

E1(u, v) =
∫ ∫

R
α(1− v)2‖∇u‖2dxdy

E2(u, v) =
∫ ∫

R
β(u− g)2 +

ρ

2
‖∇v‖2 +

v2

2ρ
dxdy

Split and solve

minimize {E1(u, v), E2(u, v)}
subject to (u, v) ∈ (W 1,2(R))2
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APPLY TO THE AMBROSIO-TORRORELLI 
FUNCTIONAL

ε-Constraint problem

minimize E1(u, v)
subject to E2(u, v) ≤ ε

Remark : The Ambrosio-Tortorelli functional is defined on 
continuous domains but we are going to apply the epsilon-

constraint method which is for vector domains. 
Now I am considering the discretized images as vectors. 
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KARUSH-KUHN-TUCKER 
CONDITION

L(u, v, λ) = E1(u, v) + λ(E2(u, v)− ε)

Lu(u, v, λ) =
∂

∂u
(E1(u, v) + λE2(u, v)− λε) = 0

Lv(u, v, λ) =
∂

∂v
(E1(u, v) + λE2(u, v)− λε) = 0

λ(E2(u, v)− ε) = 0 and λ ≥ 0
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GRADIENT DESCENT 
EQUATIONS

∂u

∂t
= div(α(1− v)2∇u)− β(u− g)

∂v

∂t
= ∇2v +

2α

ρ
(1− v)‖∇u‖2 − v

ρ2

λ =
∫ ∫

R α(u− g)div((1− v)2∇u)dxdy

ε−
∫ ∫

R
ρ
2‖∇v‖2 + v2

2ρdxdy

We implement into computer by finite difference schemes.
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THE EXPERIMENTS

We do experiments on two images, one is an image 
with simple detail and another is more complicating. 
The parameters are fixed except for epsilon.

image 1 image 2
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RESULTS
Parameters : α = 0.10, β = 0.001, ρ = 1.0, number of iterations = 10

standard alternative
epsilon=0.05

alternative
epsilon=0.10

alternative
epsilon=0.15

alternative
epsilon=0.20
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RESULTS
Parameters : α = 0.10, β = 0.001, ρ = 1.0, number of iterations = 300

standard alternative
epsilon = 0.05 

alternative
epsilon = 0.10 

alternative
epsilon = 0.15 

alternative
epsilon = 0.20 
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DISCUSSION

We haven’t designed a good measurement to compare 
the efficiency between the standard approach and the 
alternative approach yet.

The results can be observed by horizontal section 
which the solutions from standard approach seem to 
be smoother.

We have some reformations from continuous domains 
to vector domains which have not been checked the 
availability well. The results are calculated 
approximately.
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FUTURE WORK

Try to apply other methods and problems.

We have to study multiobjective optimization in 
infinite dimensional domains. Where most 
neuroscience problems locate in.

The evolutionary algorithm for multiobjective 
optimization is also promising to be apply in this field.
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