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Abstract

The target of this training is to understand the role of the relaxation

inside the numerical process. In particular it focuses on analysis and

numerical simulation of relaxation Navier-Stokes for incompressible �uids

using �nite element methods in two space dimensions.
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1 Introduction

The Navier-Stokes equations describe dynamical behavior of incompressible �uid
in space and time. This behavior is modeled as a system of partial di�erential
equations 

∂tu+ u · ∇u− ν∆u+∇p = f(x, t)
divu = 0
u|∂Ω = g(x, t)

(1)

• d is the dimension of the space, in this training we consider d = 2

• Rd ⊃ Ω is the space, where the �uid is situated.

• R ⊃ [0, T ] is time period of observation.

• u : Ω× [0, T ] −→ Rd, (x, t) 7→ u(x, t) is the velocity of the �uid in point x
at time t

• p : Ω× [0, T ] −→ R, (x, t) 7→ p(x, t) is the pressure of the �uid in point x
at time t

• g(x, t) : ∂Ω× [0, T ] −→ Rd is the boundary condition, which describes the
behavior of the velocity u on the boundary ∂Ω.1

• f(x, t) : Ω× [0, T ] −→ Rd describes body forces of the �uid.

• ν is viscosity of the �uid.

1We focus on the Dirichlet boundary conditions, other conditions are also possible.
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• The equation divu = 0 describes the incompressibility of the �uid.

• Ω, T , f , g, ν are given, the functions u and p need to be calculated.

1.1 Relaxation �nite element schemes for the incompress-

ible Navier-Stokes equation.

Following [4] we extend the incompressible Navier-Stoke equations (2) by adding
a relaxation approximation ε∂ttu+ ε∂t∇p as following

∂tu+ u · ∇u− ν∆u+∇p +ε∂ttu+ ε∂t∇p = f(x, t)
divu = 0
u|∂Ω = g(x, t)

(2)

We will focus on low viscosity values and we will analyze the behavior of
the numerical simulation depending on the parameters ν , ε and the choice of
�nite element space. Since the incompressibility of the �uid, that means the
expression divu = 0, could be the source of instability of numerical solution, we
will try to apply special �nite element spaces described in the paper [5], to see
how they in�uence the numerics.

1.2 Methodology

The idea of the training is to collect general ideas from various sources and try
to implement them. To learn to work with various sources, to do it quickly and
focus only on essential parts is an important part of the scienti�c work.

The studying sequence was �rstly to read articles [4, 5], in order to under-
stand, what are the �nal goals of the training and what is required to achieve
these goals. Then it was necessary to go back to simple mathematical mod-
els until the point, where knowledge received in the MathMods master courses
could be applied. After the choice of starting point we can go step by step to the
�nal goal, increasing the complexity of the mathematical models, introducing
new numerical methods and improving software.

The numerical implementation is an essential part of the training. To join
mathematics with numerical implementation we will often use ideas from Lit-
erate Programing paradigm. This paradigm was introduced by Donald Knuth
as a way of producing program documentation. The di�erence to the com-
mon programing process is following: instead of just to add comments into the
source code we will put source code in the documentation. Actually the largest
part of the report, which is put into appendix, is documentation to the various
numerical implementations in FreeFem++. More information about Literate
Programming could be found in http://en.wikipedia.org/wiki/Literate_

programming.
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1.3 Implementation

For the numerical simulation, tests and visualization we will work only with
free and open source software, and open standards. This software is of height
quality and additionally it provides us with the following advantages

• Working with worldwide communities.

• Height �exibility, due to possibility to extend or to combine already ex-
isting solutions.

• More independence from the original software developers.

• Working on di�erent platforms: Unix, OSX, Windows.

• Avoiding of �black boxes�.

• No additional license costs for private, scienti�c and commercial use.

• Freely available documentation.

The list of software with a short description and short information about the li-
cense will be given in the section 7. For FEM calculation we will use FreeFem++.

During the project I used 4 programming languages:

• FreeFem++, for numerical calculations.

• Python, for automatization of simulation tests with di�erent parameters
and postprocessing (visualization and format conversion).

• C++, to write a special library for data interchange between FreeFem++
and external applications.

• R, for postprocessing (analyzing and visualization) of experiment series.

1.4 Notations

For our calculations we will use Hilbert spaces L2(Ω) and L(Ω)2 spaces with

L2(Ω) = {f : Ω→ R| ||f ||L2(Ω) <∞}

with appropriate scalar product and norms

< u, v >L2(Ω) =
ˆ

Ω

uvdx

||u||L2(Ω) =
√
< u, u >L2(Ω)

For the vector �elds on Ω we will use

L2(Ω)2 = {f = (f1, f2) : Ω→ R2| ||f ||L2(Ω)2 <∞}

5



subspaces with appropriate scalar products and norms de�ned for f :=
(f1, f2), g := (g1, g2) as

< f, g >L2(Ω)2 =
ˆ

Ω

h1g1dλ+
ˆ

Ω

f2g2dλ

||f ||L2(Ω)2 =
√
< f, f >L2(Ω)2 =

√
< f1, f1 >L2(Ω) + < f2f2 >L2(Ω)

In the most cases we will write just < u, v > for < u, v >L2(Ω) or <
u, v >L2(Ω)2

For the numerical analysis we mainly use Sobolev spaces

Hm(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω)∀|α| ≤ k}

with the seminorms

|f |Hm(Ω) =

 ∑
|k|=m

||∂kf ||L2(Ω)

1/2

and with the norm

||f ||Hm =

 ∑
0≤|k|≤m

|f |2Hm(Ω)

1/2

We will use the names (w, q) for the Taylor-Green Vortex to wich we will
refer very often. The Taylor-Green Vortex as an analytical solution of Navier-
Stokes equations. The more precise information about it can be found in the
appendix section C

2 Stokes equations for incompressible �uids2[3]

As already mentioned in section 1.2, Methodology , we will start with simpler
equations. In this section we will introduce many important ideas, which we
will often use later. We start with Stokes equations

−ν∆ũ+∇p = f̃(x, t)
divũ = 0
ũ|∂Ω = g(x, t)

(3)

The Stokes equations model the behavior of a �uid with very height viscosity
in steady state.

2The theoretical part of this chapter is mainly took from the 12. chapter of the book [3]
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2.1 Variational Formulation

To solve the Stokes equations (4) means to �nd function u and p. These func-
tions are from the di�erent functional spaces. The function space for velocity
we will call

X = H1(Ω)2

and the functional space for pressure we will call

M = {q ∈ L2(Ω) :
ˆ

Ω

qdx = 0}

The additional constraint
´

Ω
qdx = 0 is necessary for the uniqueness of the

solution p.
For the FEM approximation, we will use �nite subpsaces Xh ⊂ X and

Mh ⊂M .
The �rst step is to bring the system of equations to the form

−ν∆u+∇p = f(x, t)
divu = 0
u|∂Ω = 0

(4)

To get variational formulation of the problem, we multiply the �rst equations
with a test function φ ∈ X and constraint equation divu = 0 with a test function
ψ ∈ M and integrate over Ω. The result is the variational formulation of the
problem: {´

Ω
−ν∆uφdx+

´
Ω
φ∇pdx =

´
Ω
fuφdx´

Ω
uψdx = 0

⇐⇒

{
a(u, φ) + b(φ, p) = F (φ) ∀φ ∈ X
b(u, ψ) = 0 ∀ψ ∈M

(5)

with
a(v, φ) = ν < ∇v,∇φ >, b(φ, ψ) = − < divφ, ψ >

Both bilinear forms are continuous, that means

a(v, φ) < C||v||X ||φ||X , ∀v, φ ∈ X
b(φ, ψ) < C||φ||X ||ψ||M , ∀φ ∈ X,∀ψ ∈M

2.2 Existence and Uniqueness of the Solution and Mean-

ing of Inf-Sup condition

In order to solve the equations above, we de�ned a subspace Z of X s.t.

Z = {φ ∈ X|b(φ, ψ) = 0 ∀ψ ∈M}
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To �nd solution u in the subspace Z of X, means to solve an equation

a(u, φ) = F (φ) ∀φ ∈ Z

Such a solution exists and it is unique, due to coercivity and continuity of the
bilinear form a on the Hilbert space Z, according to the Lax-Milgram theorem.

The next step is to �nd the pressure p. From the variational formulation it
follows

b(φ, p) = F (φ)− a(u, φ) ∀φ ∈ X (6)

The u is taken from the previous step. We cannot use Lax-Milgram theorem
here strait forward, but another, related to the coercivity, concept . To show
this relationship, we take a coercive bilinear form c(u, v) on some a Hilbert space
H, scalar product <>H and appropriate norm || · ||H and we transform it

c(u, v) ≥ α||u||H ||v||H ∀u, v ∈ H

=⇒ c(u, v)
||v||H

≥ α||u||H ∀u, v ∈ H

=⇒ sup
v∈H

c(u, v)
||v||H

≥ α||u||H ∀u

Fortunately it is enough for to have existence and uniqueness of the solution
for the equation (6) a less weak condition

=⇒ sup
v∈X

b(φ, ψ)
||φ||H

≥ α||ψ||M ∀v ∈ X

with continuity of a and b.

2.3 Numerical Simulations

We will perform some numerical simulation, in order to �nd out, how di�erent
parameters, like viscosity ν, mesh re�nement N and choice of the �nite dimen-
sional Spaces (Xh,Mh) ⊂ (X,M) in�uence the solution. For analysis of quality
of the simulation we will need some exact solution as a reference. For this pur-
pose we will use Taylor-Green Vortex function described in the section C. The
Taylor-Green Vortex is an exact solution of the Navier-Stokes equations. To
use it as Stokes equations it needs to be transformed. This method we will use
frequently.

Let (w, q) be a Taylor-Green Vortex solution, that is
∂tw + w · ∇w − ν∆w +∇q = 0 on Ω = (0, π)2 × [0,∞)
divw = 0
w|∂Ω = w|∂Ω

For the �xed time t = 0 it follows
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
−ν∆w +∇q = (∂tw − w · ∇w)|t=0

divw = 0
w|∂Ω = w|∂Ω,t=0

We de�ne f(x) and g(x) as

f(x) : = (∂tw(x, 0)− w · ∇w)|t=0

and

g(x) := w(x, 0)

Thus u(x) = w(x, 0), p = q(x, 0) is the exact solution of
−ν∆u+∇p = f on Ω
divu = 0
u|∂Ω = g on ∂Ω

2.4 Postprocessing of the Results of Numerical Simula-

tions

A series of the Stokes was solving by an FreeFem++ script described in Ap-
pendix E with di�erent values of ν and di�erent mesh re�nement N . Mesh
re�nement means that for the rectangle domain [0, π]2 we use N ×N grid. This
process was automatized by using of a python script stokes.py.

ν 10 1.0 1/10 10−2 10−3 10−4 10−5 10−6 0
N 10 15 20 25 30 40

This simulations where done with Taylor-Hood elements (Xh,Mh) = (P2(Ω)2, P1(Ω))
(continues, partially quadratic, and partially linear functions). As a solver was
selected default FreeFem++ solver UMFPACK. The choice of he UMFPACK
was done after a series of tests, where it proved to be robust and fast. (See the
test results in the section 6). The simulations results where collected in an .csv
�le and later analyzed with an R-script stokes.r. In order see relation between
di�erent parameters we used standard plot function for data frames.
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Figure 1: Parameter relations

It is important to notice the in�uence of viscosity ν on the calculation pre-
cision and calculation time. Mainly it means the low viscosity the less precise
is the calculation. The solutions with ν = 0 failed. Beginning with viscosity
greater than 1 the precision decreases again.

We need take into account, that the relationship between viscosity and preci-
sion also depends on many technical factors, like choice of the solver, implemen-
tation of the linear solver, solving methods, problem de�nition in FreeFem++,
break condition and so on. But mention of this relation has at least two reasons.

• There are analytically estimators for the convergence speed with the same
relationship.

• We need to know numerical properties of tools we working with.

The next plots demonstrate the in�uence of grid re�nement on precision and
calculation time.
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Figure 2: grid re�nement and relative error

11



10 15 20 25 30 35 40

10
20

50
10

0

nu =  0.1
nu =  0.01
nu =  0.001
nu =  1e−04
nu =  1e−05
nu =  1e−06

Figure 3: grid re�nement and calculation time

3 Steady State Navier-Stokes equations3[1]

If we take Navier-Stokes equations, and make an assumption it is in steady
state, the expression ut disappears:

u · ∇u− ν∆u+∇p = f(x, t)
divu = 0
u|∂Ω = g(x, t)

(7)

This equation system describes �uid properties in steady state.
Comparing to the Stokes equations we get an additional non-linear expres-

sion u×∇u, which makes the solving more complicated.

3The mathematical part of this chapter is based on the 2.1 chapter of the book [1]
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3.1 Variational Formulation Oseen problem

Solving of steady state Navier-Stokes equation with FEM methods requires the
linearisation of the u · ∇u expression. One popular method is based on Picard
iteration method. We choose some starting point u0, then in each step we
interactively solve so called Oseen problem

un · ∇un+1 − ν∆un+1 +∇pn+1 = f(x, t)
divun+1 = 0
un+1|∂Ω = g(x, t)

(8)

For uniqueness of the pressure p we add some additional condition

ˆ
Ω

pdx = 0

Under certain condition: ν is not too small, f is not too large the steady
state Navier-Stokes equation 7 has a unique solution (û, p̂) to which (uk, pk)
converges with k →∞

To get the variational formulation of the problem, we use the same approach
like in Stokes equations. Additionally we add a new expression < uk∇u, φ > to
it.


< uk · ∇uk+1, φ > +ν < ∇uk+1,∇φ > − < pk+1, divφ >

−
´
∂Ω

∂
∂nuφds−+

´
∂Ω

(φ · n)pds =< f, φ > on Ω
< divuk+1, ψ > = 0
uk+1|∂Ω = g(x, t) on ∂Ω

(9)

3.2 Numerical Simulations

As an numerical test we choose a Ω = (0, 1) × (0, 1), f = 0, and a boundary
condition u1 = 0.1 on Γ2 ∪ Γ4,

and u2 = 0 on ∂Ω, ν = 1
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Figure 4: Simulation of a steady state Navier-Stoke equations, c = 0.1

Figure 5: Simulation with k = 20, grid=10x10: ν = 0.1 (left), ν = 10−7(right)

We mentioned previously, that, according to the book [1], the convergence
depends on viscosity ν and body force function f . To test this behavior we
performed simulations with very low ν, to �stress� the solver until the solver
breaks down. During for ν = 10−6 there were still good results, with ν =
10−7 the solver stops to work properly, even increasing of iteration number for
example k = 200 did not lead to better results. Just to test that the errors
were not caused by round-o� errors because of low ν, or the resulting �strange�
solution is a real solution, we just increase the grid re�nement and the problem
was �xed.
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Figure 6: Simulation with k = 20, grid=20x20: ν = 10−7

Remark: The control method in simulation was not su�cient, since just
apply the PDE to P2 solution is not possible. The problem is, that the second
derivative of uh does not exists (in not weak sense). The P3 approximation is
not implement in FreeFem and approximation of the derivative with P2 does
not lead to su�cient results. This simulation script should be impoved.

4 Navier-Stokes equations
∂tu+ u · ∇u− ν∆u+∇p = f(x, t) on Ω× [0, T ]
divu = 0
u|∂Ω = g(x, t) on ∂Ω× [0, T ]

(10)

The Navier-Stokes equations describe dynamical behavior of a �uid.

4.1 Variational Formulation

In order to apply the FEM method to it we need to discretize the time derivative
of u. We will spit the time domain [0, T ] in ∆t uniform time steps. We will use
an upper index n do describe the function value at time (n ·∆t). For example
un(x) = u(x, n ·∆t).

We will also choose following discretization scheme

∂tu+ un · ∇un − ν∆un+1 +∇pn+1 = fn+1

15



The time discretization is an important part of the numerical
solution. Just applying �nite di�erences schemes to ut is not enough.
Fortunately FreeFem++ provides a special operator convect for time
discretization of the expression ∂tu + un · ∇un 4. We will use the
FreeFem++ name convect for this operator.

∂tu+un ·∇un ≈ 1
∆t

(un+1−convect(un,−∆t)) =
1

∆t
(un+1−un◦Xn)

The variational formulation of the problem is similar to the varia-
tional formulation of steady state Navier-Stoke equations. The only
di�erence is the additional time derivative ut

< 1
∆t (u

n+1 − un ◦Xn), φ > +ν < ∇un+1,∇φ >
−
´
∂Ω

∂
∂nu

n+1φds− < pn+1, divφ > +
´
∂Ω

(φ · n)pds =< fn+1, φ >, on Ω
< divun+1, ψ > = 0
un+1|∂Ω = g(x, t), on ∂Ω

This equation system is to be solved iteratively going from the
initial step u0 towards uT

4.2 Numerical Simulations

As already mentioned, the Taylor-Green Vortex is an analytical solution of
Navier-Stoke equations

∂tu+ u · ∇u− ν∆u+∇p = 0 on Ω× [0, T ]
divu = 0
u|∂Ω = g(x, t) on ∂Ω× [0, T ]

on domain Ω = (0, π)2.
For the simulation we will use Taylor-Hood Mixed elements (P2(Ω)2, P1(Ω)).

A simulation FreeFem++ script and description can be �nd in the appendix G.
Additionaly to simulation in the appendix section C contains explicite formulas,
pictures and a gnuplot script of the analytical Taylor-Green Vortex solution.

5 Navier-Stokes equations with relaxation.


∂tu+ u · ∇u− ν∆u+∇p +ε∂ttu+ ε∂t∇p = f(x, t) on Ω× [0, T ]
divu =
u|∂Ω = g(x, t) on ∂Ω× [0, T ]

(11)

4See FreeFem++ documentation [?], p. 198,
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In order to model physics in a better way we will extend the
Navier-Stokes equations with relaxation expression ε2∂ttu+ε2∂t∇p.
It is also to notice that, from mathematically point of view, this
extension changes the structure of the equations from parabolic to
hyperbolic.

5.1 Variational Formulation

For the numerical simulation, of this equations, with FEM meth-
ods, we need to discretize utt and ∂∇pt in time. To do it we use �nite
di�erences methods5. In particular, in the variational formulation
problem we use

< ∂t∇pn+1, φ > ≈ 1
∆t

< ∇pn+1, φ > − 1
∆t

< ∇pn, φ >

and

< ∂ttu
n+1, φ > ≈ <

un+1 − 2un + un−1

∆t2
, φ > .

Finally the resulting variation formulation for one iteration step in time is

0 = (∂tun+1 − un · ∇un, φ) + v(∇un+1,∇φ)− (∇φ, pn+1)− (un+1,∇ψ)− ε(pn+1, ψ)

≈ 1
∆t

< un+1, φ > +
ε

∆t2
< un+1, φ > +ν < ∇un+1,∇φ >

− < divφ, pn+1 > +
ε

∆t
< divφ, pn+1 >

− 1
∆t

< convect(un,−∆t), φ >

+
ε

∆t2
< −2un + un−1, φ > − ε

∆t
< divφ, pn+1 >

+
ˆ
∂Ω

∂

∂n
un+1φds+

ˆ
∂Ω

(φ · n)pds+
ε

∆t2

ˆ
∂Ω

∂

∂n
(−2un + un−1)φds− ε

∆t

ˆ
∂Ω

(φ · n)pnds

5.2 Numerical Simulations

We will again use the Taylor-Green Vortex solution (w, q) as reference to check
the quality of the the simulation. We chose again the domain Ω = (0, π)2,
g = w(x, t). Then we transform the equations in the form of the Navier-Stokes
equations with relaxation (11)


∂tw + w · ∇w − ν∆w +∇q +ε∂ttw + ε∂t∇p = ε∂ttw + ε∂t∇q on Ω× [0, T ]
divw = 0
w|∂Ω = g(x, t) on ∂Ω× [0, T ]

5See Section A for more information
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That means that the Taylor-Green-Vortex is the exact solution of
the Navier-Stokes equation with relaxation. with f(x, t) := ε2∂ttw(w, t)+
ε2∂t∇q(w, t)

6 Tests of FreeFem++ Solvers

At the beginning of the training we made some calculation of Navier-Stokes
equations with and without relaxation in order to test if FreeFem++ is a right
choice for this training. After the good results got by solving method6 suggested
in FreeFem documentation [2], section 9.6, for Navier-Stokes equations. we
tested other solvers, to �nd the most suitable one for this training. Although
these �rst experiments were done in very rough way, the results in�uenced much
the subsequent work.

If there is no special remarks, we used T = 5, ν = 1
1000 , dt = T

100 , ∆x =
∆y = π

20 . As reference we took the Taylor-Green-Vortex.
For the simulation quality measurement we used the absolute error

errabs = ||u(T )− uh(T )||L2(Ω)

and the relative error

errrel =
||u(T )− uh(T )||L2(Ω)

||u(T )||L2(Ω)

Default UMFPACK solver, dependence on ν:
ν 1 10−1 10−2 10−3 10−4 0

CT7 [s] 28.3 30.82 32.44 32.16 32.39 32.72
errabs 2.76698e-06 0.00428494 0.0819085 0.119019 0.125909 0.12806
errrel 0.0267864 0.00526776 0.0423797 0.057081 0.0599728 0.0609257

UMFPACK solver with relaxation of Navier-Stokes equations: Here
we tried out if the relaxation which subject of this training can improve the solu-
tion of Navier-Stokes equations similar to relaxation of the divergence constraint.
That is why the reference point was Taylor-Green-Vortex with f(x, t) = 0

ν 10−3 0
CT8 [s] 45.43 44.94
errabs 0.120235 0.129117
errrel 0.057696 0.0614583

6The FreeFem++ documentation provides with various solving methods for Navier-Stokes
equations. It was just one of them.
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Relative error of Crout solver and divergence constraint relaxation9:
The divergence constraint relaxation, means here adding ε2u to the constraint.
The resulting equation is

∂tu+ u · ∇u− ν∆u+∇p = 0 on Ω× [0, T ]
divu+ ε2u = 0
u|∂Ω = g(x, t) on ∂Ω× [0, T ]

Doing so, we got rid of the divergence constraint, which can be a source of
instabilities or slow convergence.

Crout solver, erroDependence on viscosity ν:
ν 1 10−1 10−2 10−3 10−4 0

CT [s] 26.59 29.03 30.14 30.42 30.27 30.65
errabs 2.76698e− 06 0.00428505 0.0819095 0.11902 0.12591 0.128061
errrel 0.0267864 0.00526789 0.0423802 0.0570815 0.059973 0.0609261

UMFPACK solver vs crout solver with di�erent viscosities ν: We will
compare calculation time and relative errors of both methods. To distinguish
between Standard and Crout solver, we will use indexes S and C appropriately.

ν 1 10−1 10−2 10−3 10−4 0
CTS

CTC
106.431 % 106.166 % 107.631 % 105.72 % 107.004% 106.754 %

errS,rel − errC,rel 0 −1.3 · 10−8 −5 · 10−7 −5 · 10−7 −2 · 10−7 −4 · 10−7

Conclusions:

• As one can notice, the relative error grows if ν decreases. Additionally
the numerical solutions become less �smooth� if ν decrease. Here some
graphical examples for err1 = u1 − uh with ν = 1 (left) ν = 10−4 (right)
to compare. The using of the P2b (P2 elements + bubble function) does
not improve the situation.

• The precision of the Crout solver with an standard relaxation grows with
decreasing of the ε2 parameter.

• Without relaxation expression the Crout solver does not work.

• The Crout solver does not work, if we replace the constraint relaxation
with relaxation of Navier-Stokes equations.

• From the numerical results we can conclude, that the Crout solver with re-
laxation is about 6 % faster during it stay nearly as precise as the standard
method. That means it is a good choice for the solving of Navier-Stokes
equations.

9The relaxation mentioned here as constraint relaxation, is not Navier-Stokes equation
relaxation, which is the subject, of this training. It is only necessary for the Crout solver.
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Figure 7:
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• Navier-Stokes equations relaxation does not improve numerical solving of
Navier-Stokes equations.

• UMFPACK provides good results, without adding of special additional
relaxation expression. This will make our test less �biased� by a constraint
relaxation. The UMFPACK test was chosen for subsequent tests.

• Manual performing of test series is very slow there is a need for automa-
tizing of this process.

Remark: Besides the Crout and UMFPACK solvers I also tested LU, CG,
Crout, Cholesky and GMRES FreeFem++ solvers. The only one which works
was GMRES, but it was about 175 % slower than UMFPACK without any
advantage in precision.

7 Software

In this training following Software was used

• LYX, A The WYSIWYM Document Processor with LATEX back-end

• FreeFem++ as, for FEM-Calculations.

• FreeFem++-cs, an integrated environment for FreeFem++

• subversion, a version control system

• noweb, a tool for Literate Programming

• Eclipse, an IDE for C++ and Python development

• Inkscape, vector graphic editor.

• TextText Inkscape plug-in, for LATEX formulas.
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• Gnuplot, plotting tool for post processing.

7.1 LYX.

LYX is an graphical document processor using �what you see is what you mean"
paradigm (WYSIWYM). LYX uses LATEX to produces documents. Additionally
it supports noweb.

• Homepage of the project: http://www.lyx.org.

• License: LYX is released under the GNU General Public License, version
2 or later.

• Platforms: LYX runs on Linux/Unix, Windows, and Mac OS X.

7.2 FreeFem++

FreeFem++ is an implementation of a language dedicated to the �nite element
method. It enables to solve Partial Di�erential Equations (PDE). The choice
of the FreeFem was motivated by the idea, to use already existing solvers for
Navier-Stokes equation, replacing the standard �nite elements by an divergence
preserving Crouzeix-Raviart element. This approach will make possible to reuse
all nice features provided with FreeFem packages, like determination of the do-
main geometry, triangulation, solvers, and own scripting language. The default
solution of the Navier-Stoke equation can be also used to validate the imple-
mentation of the Crouzeix-Raviart element.

• Homepage of the project: http://www.freefem.org/ff++/.

• License: GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, Febru-
ary 1999 Except �les : Coming form COOOL software (all �les in di-
rectory src/Algo, mailto:coool@coool.mines.edu), no license. and the �le
mt19937ar.cpp ( mailto:m-mat@math.sci.hiroshima-u.ac.jp ) with own li-
cense.

• Platforms: FreeFem++ runs on Linux, FreeBSD, NetBSD, Solaris 10,
Windows, and Mac OS X.

7.3 FreeFem++-cs

FreeFem++-cs an integrated environment for FreeFem++.

• Homepage: http://www.ann.jussieu.fr/~lehyaric/ffcs/index.htm

• License: is distributed under the FreeFem++ license.

• Platforms: FreeFem++-cs runs on Linux/Unix, Windows, and Mac OS
X.
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Remark: To work with FreeFem++-cs and FreeFem++ under Ubuntu, it was
necessary just to down load a source tarball, extract it and execute

./configure --enable-debug

the �enable-debug option will add debugging information the the library. All
necessary libraries including FreeFem++ will be down loaded automatically.

7.4 Subversion

During the traing I produced a big amount of documentation and sources. To log
the changes there was a need in a version control system. For this task I chosen
an open source version control system Subversion. Another very important
feature of subversion is a possibility of collaboration work, in the case if someone
will join to the project.

• Homepage: http://subversion.tigris.org

• License: http://subversion.tigris.org/license-1.html

• Platforms: subversion runs on Linux, FreeBSD, Solaris, Windows, and
Mac OS X.

7.5 Noweb

The numerical software is a essential part of this training. To join a proper
mathematical documentation with source code in FreeFem++ and other pro-
gramming languages I used the Literate Programing paradigm. That means
that the documentation in LATEX format and source code will be stored in one
�le. This approach has following advantages:

• The source code is better to understand. It is possible to use mathematical
formulas in the documentation and all other LATEX features.

• The appendix of this report contains source code, which can be extracted
from the documentation �le special noweb tool.

Here some information about the noweb project:

• Homepage http://www.cs.tufts.edu/~nr/noweb/

• License: Noweb is copyrighted 1989�2008 by Norman Ramsey. All rights
reserved. You may use and distribute noweb for any purpose, for free.
You may modify noweb and create derived works, provided you retain
the copyright notice, but the result may not be called noweb without my
written consent. You may do anything you like with programs created
with noweb. You may even sell noweb itself, for example, as part of a
CD-ROM distribution, provided that what you sell is the true, complete,
and unmodi�ed noweb.

• Platforms: Linux, Windows.
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Remark: I never used the Literature Programing before and this internship
is a good opportunity to learn it.

7.6 Eclipse

Eclipse is a multi-language, open source software development platform with an
IDE and a plug-in system to extend it. It is written in Java, and can be used to
develop in Java, C++, FORTRAN, Python and other languages. In this project
I used it for C++ and Python development.

• Homepage: http://www.eclipse.org/

• License: Eclipse Public License (EPL), the plug-ins may have di�erent
license.

• Platforms: Linux, Mac, Windows

Remark: To compile an extension for FreeFem++ a pretty complex make
�le is necessary. To simplify that task we will use an standard make �le from
the FREE_FEM_DIR/src/femlib directory. Assume the FreeFem++ sources
reside in FREE_FEM_DIR directory, RPOJECT_DIR is the directory with
custom libraries for FreeFem++, ItemStorage.cpp is a �le with c++ source cus-
tom FreeFem++ functions. The steps below can be used to create an eclipse
project for the convinient development of custom FreeFem++ objects and func-
tions.

1. Create an PROJECT_DIR directory for new custom FreeFem++ ele-
ments

2. Select File->New->Project in eclipse. In the wizard select �make �le
empty project�. Uncheck �use default location� and set PROJECT_DIR/src/femlib
as location.

3. Create a meka�le in PROJECT directory with content:

INCFF="FREE_FEM_DIR/ff/local/examples++-load/Include"

all: ItemStorage

ItemStorage:

ItemStorage.cpp ff-c++ ItemStorage.cpp

7.7 Inkscape

Inkscape is a free and open source vector graphics editor application

• Homepage of the project: http://www.inkscape.org/

• License: GPL.

• Platforms: LYX runs on Linux, Mac OS X and Windows.
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7.8 TextText

Is an Inkscape extension (plug-in), which makes possible to insert LATEX text
and formulas in Inkscape. It is written in python.

• Homepage of the project: http://www.elisanet.�/ptvirtan/software/textext/.

• License: Free (See LICENSE.txt inside the packages for more informa-
tion).

• Platforms: LYX runs on Linux, Mac OS X and Windows.

7.9 Gnuplot

Gnuplot is free and open source visualization application.

• Homepage of the project: http://www.gnuplot.info

• License: Custom one (Modi�cation are restricted, some distribution re-
strictions, check website for more information).

• Platforms: Gnuplot runs on Unix, GNU/Linux, Microsoft Windows, Mac
OS, and others.

7.10 R

For the postprocessing of the simulation. That means analyzing and visualiza-
tion of the results I used R. The free, open source programming language R
very powerful tool for statistic calculations

• Homepage of the project: http://www.r-project.org/

• License: GPL

• Platforms: Gnuplot runs on Unix, Linux, BSD, Microsoft Windows, Mac
OS.

7.11 Python

Python is a general purpose high level programming language, which I used
to automatize simulations and for postprocessing. It is free and open source.
There is a lot libraries written for it, including interface to gnuplot.

• Homepage of the project: http://www.python.org/

• License: OSI-approved open source license, the Python License.

• Platforms: Gnuplot runs on Unix, Linux, BSD, Microsoft Windows, Mac
OS and others.
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Appendix

A Nonlinear, bilinear and linear functions, long
forms and identities

In order too keep calculation in the report small, we will often use a short form of
di�erent expressions like this (u ·∇u, φ), but for the transformation, calculation
and programing we often need a more explicit representation. For this purpose
we put all that calculations and representations in this appendix. Here we use
dx for integration over volume, and ds for integration over surface. Note that
in FreeFem++ we need to use x for x1 and y for x2.

u×∇u and < u · ∇u, φ > −
´

Ω
u · ∇uφdx

u×∇u =
(
u1

∂
∂x1

u1 + u2
∂
∂x2

u1

u1
∂
∂xu2 + u2

∂
∂x2

u2

)

< u · ∇u, φ > = < u1
∂

∂x1
u1, φ1 > + < u2

∂

∂x2
u1, φ1 > + < u1

∂

∂x1
u2, φ2 > + < u2

∂

∂x2
u2, φ2 >

∆u and − < ∆u, φ >= −
´

Ω
∆uφdx

∆u =
(

∆u1

∆u2

)
=

(
∂
∂x2

1
u1 + ∂

∂x2
2
u1

∂
∂x2

1
u1 + ∂

∂x2
2
u1

)

− < ∆u, φ > = − < ∆u1, > − < ∆u2, φ2 >

= < ∇u1,∇φ1 > −
ˆ
∂Ω

φ1
∂u1

dn
ds+ < ∇u2,∇φ2 > −

ˆ
∂Ω

φ2
∂u1

dn
ds Green's identity

= <
∂

∂x1
u1

∂

∂x1
φ1+ <

∂

∂x2
u1,

∂

∂x2
φ1 > + <

∂

∂x1
u2,

∂

∂x1
φ2 > + <

∂

∂x1
u2,

∂

∂x2
φ2 >

−
ˆ
∂Ω

φ1
∂u1

dn
ds−

ˆ
∂Ω

φ2
∂u1

dn
ds

⇐⇒ − < ∆u, φ >=< ∇u,∇φ > −
ˆ
∂Ω

φ1
∂u1

dn
ds−

ˆ
∂Ω

φ2
∂u1

dn
ds

< φ,∇p > according to divergence theorem

ˆ
∂Ω

(φp) · nds =
ˆ

Ω

div(φp)dx

⇐⇒
ˆ
∂Ω

(φ · n)pds =
ˆ

Ω

div(φ)pdx+
ˆ

Ω

φ×∇pdx

⇐⇒< φ,∇p > = − < divφ, p > +
ˆ
∂Ω

(φ · n)pds
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< φ,∇p >= − < ∂

∂x1
φ1 +

∂

∂x2
φ2, p > +

ˆ
∂Ω

(φ · n)pds

(ut − un · ∇un) ≈ 1
∆t (u

n+1 − un ◦Xn) with un ◦Xn = convect(un,−∆t)

un ◦Xn

1
∆t

(un+1 − un ◦Xn) =

 un+1
1 − convect((un1 , u

n
2 ),−∆t, un1 )

un+1
2 − convect((un1 , u

n
2 ),−∆t, un2 )


< ut − un · ∇un, φ >≈< 1

∆t (u
n+1 − un ◦Xn), φ >

<
1

∆t
(un+1 − un ◦Xn), φ > =

1
∆t

(un+1
1 , φ1) +

1
∆t

(un+1
1 , φ1)

+
1

∆t
(convect((un1 , u

n
2 ),−∆t, un1 ), φ1)

+
1

∆t
(convect((un1 , u

n
2 ),−∆t, un2 ), φ2)

< ∂t∇p, φ >

∂t∇p =
∇pn+1 −∇pn

∆t
+O(∆t)

=⇒< ∂t∇p, φ > ≈ 1
∆t

< ∇pn+1, φ > − 1
∆t

< ∇pn, φ >

=
1

∆t

[
−(pn+1,

∂φ1

∂x1
)− (pn+1,

∂φ2

∂x2
) + (pn,

∂φ1

∂x1
) + (pn,

∂φ2

∂x2
)
]

< ∂ttu, φ >

∂ttu =
un+1 − 2un + un−1

∆t2
+O(∆t)

=⇒< ∂ttu, φ > ≈ <
un+1 + un−1 − 2un

∆t2
, φ >

=
1

∆t2
< un+1

1 , φ1 > +
1

∆t2
< un+1

2 , φ2 > −
2

∆t2
< un1 , φ1 > −

2
∆t2

2 < un2 , φ2 >

+
1

∆t2
(un−1

1 , φ1) +
1

∆t2
(un−1

2 , φ2)
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B General Remarks to Simulations

The FreeFEM scripts were derived from the script cavity.edp from the section
9.6 of the FreeFem++ documentation .

In order to make a lot of tests with di�erent parameters automatically,
I developed special libraries which make possible to pass parameters to the
FreeFem++ simulation through a �le simulation.params.txt.

27a 〈Initialize Simulation 27a〉≡ (44 52 53a 59a) 27b .

load "ItemStorage"; // Some items constant coud be overwritten by an external file.

string [string] params; // Variable to store simulation parameters.

// load alternative settings from an external file.

ItemStorageLoad(params, "simulation.params.txt");

string resultDataDir="."; // here we will store results of simulations;

ItemStorageGet(params, "resultDataDir", resultDataDir);

To reuse code in di�erent simulations, we will use the same names for con-
stants, spaces and some parameters.

27b 〈Initialize Simulation 27a〉+≡ (44 52 53a 59a) / 27a 27c .

// Define some constatnt

real nu=1.0; // viscosity

real T=5; // Time period where u will be observed

We will overwrite these default parameters with special testing parame-
ters, if they are de�ned in simulation.params.txt �le in the same directory with
FreeFem++ script. Overwrite ν and T .

27c 〈Initialize Simulation 27a〉+≡ (44 52 53a 59a) / 27b

// load alternative settings from an external file.

ItemStorageGet(params,"nu",nu);

ItemStorageGet(params,"T",T);

The code can be extracted from this �le using a bash script build.sh.

#!/bin/sh

# Extract FreeFem++ source code for:

# stokes.numeric.vs.exact.edp

# navier.stokes.ss.edp

# navier.stokes.num.vs.exact.edp

# navier.stokes.rx.num.vs.exact.edp

notangle -Rstokes.numeric.vs.exact.edp presentation.report.nw >edp/stokes.numeric.vs.exact.edp

notangle -Rnavier.stokes.ss.edp presentation.report.nw >edp/navier.stokes.ss.edp

notangle -Rnavier.stokes.num.vs.exact.edp presentation.report.nw >edp/navier.stokes.num.vs.exact.edp

notangle -Rnavier.stokes.rx.num.vs.exact.edp presentation.report.nw >edp/navier.stokes.rx.num.vs.exact.edp
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C Taylor-Green-Vortex

According to wikipedia: http://en.wikipedia.org/wiki/Taylor%E2%80%93Green_
vortex the Taylor-Green-Vortex function is one of the exact solution of Navier-
Stokes equation 

∂tu+ u · ∇u− ν∆u+∇p = 0
divu = 0
u|∂Ω = w(x, y, t)

on the space domain Ω = (0, π)2 time domain [0,∞).
We will call this solution (w, q) to distinguish it from other soltions.

Figure 8:

For the description of the boundary of the space domain we will use ∂Ω =
Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where Γi are straight lines. This is a standard description of
a rectangle boundary in FreeFem10.

The explicit de�nition of the Taylor-Green Vortex solution is following:

w1(x, y, t) = sin(x) cos(y)F (t)
w2(x, y, t) = − cos(x) sin(y)F (t)

q((x, y), t) =
1
4

(cos 2x+ cos 2y)F 2(t)

F (t) := e−2νt

28 〈Taylor-Green-Vortex 28〉≡ (44 53a 59a)

// TGV prefix means Taylor-Green-Vortex

func real TGVF(real t)

{

return exp(-2*nu*t);

}

func real TGVU1(real t)

{

10See documentation of the command square for more information.
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sin(x)*cos(y)*TGVF(t);

}

func real TGVU2(real t)

{

-cos(x)*sin(y)*TGVF(t);

}

func real TGVP(real t)

{

0.25*(cos(2*x)+cos(2*y))*TGVF(t)^2;

}

We will also calculate ∂tu , ∂
dxui ,

∂
dyui and u×∇u for future use

∂tu1(x, y, t) = −2νu1(x, y, t) = −2ν sin(x) cos(y)e−2νt

∂tu2(x, y, t) = −2νu2(x, y, t) = 2ν cos(x) sin(y)e−2νt

29 〈Taylor-Green-Vortex-dt 29〉≡ (44)

func real TGVU1dt(real t)

{

-2*nu*sin(x)*cos(y)*TGVF(t);

}

func real TGVU2dt(real t)

{

2*nu*cos(x)*sin(y)*TGVF(t);

}
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∂

dx
u1 = cos(x) cos(y)e−2νt

∂

dy
u1 = − sin(x) sin(y)e−2νt

∂

dx
u2 = sin(x) sin(y)e−2νt

∂

dy
u2 = − cos(x) cos(y)e−2νt

30 〈Taylor-Green-Vortex-dxdy 30〉≡ (44)

func real TGVU1dx(real t)

{

cos(x)*cos(y)*TGVF(t);

}

func real TGVU1dy(real t)

{

-sin(x)*sin(y)*TGVF(t);

}

func real TGVU2dx(real t)

{

sin(x)*sin(y)*TGVF(t);

}

func real TGVU2dy(real t)

{

-cos(x)*cos(y)*TGVF(t);

}
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u · ∇u =

(
u1

∂
∂xu1 + u2

∂
∂yu1

u1
∂
∂xu2 + u2

∂
∂yu2

)

=

(
u1

∂
∂xu1 + u2

∂
∂yu1

u1
∂
∂xu2 + u2

∂
∂yu2

)
F 2(t)

∂ttu1(x, y, t) = 4ν2u1(x, y, t) = 4ν2 sin(x) cos(y)e−2νt

∂ttu2(x, y, t) = 4ν2u2(x, y, t) = −4ν2 cos(x) sin(y)e−2νt

31a 〈Taylor-Green-Vortex-u-dtdt 31a〉≡ (64)

func real TGVU1dtdt(real t)

{

4*(nu^2)*sin(x)*cos(y)*TGVF(t);

}

func real TGVU2dtdt(real t)

{

-4*(nu^2)*cos(x)*sin(y)*TGVF(t);

}

∂t∇p(x, y, t)

∇p =
(
− 1

2 (sin 2x)e−4νt

− 1
2 (sin 2y)e−4νt

)

∂t∇p =
(

2ν(sin 2x)e−4νt

2ν(sin 2y)e−4νt

)
31b 〈Taylor-Green-Vortex-grad-p-dt 31b〉≡ (64)

func real TGVPdxdt(real t)

{

2*nu*sin(x)*TGVF(t)^2;

};

func real TGVPdydt(real t)

{

2*nu*sin(y)*TGVF(t)^2;

}
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ε∂t∇p(w, t)
In order to visualize the Taylor-Green Vortex we can use a gnuplot script

32 〈taylor.green.vortex.gp 32〉≡
# This is a gnu script to plot velocity vector field

# and pressure of a Taylor-Green-Vortex

# Set space domain

set xrange [0:pi]

set yrange [0:pi]

# define parameters for vortex functions

nu = 0.1

t = 0

# Define vortex functions.

TGVF(t) = exp(-2*nu*t)

TGVU1(x,y)=sin(x)*cos(y)*TGVF(t)

TGVU2(x,y)=-cos(x)*sin(y)*TGVF(t)

TGVP(x,y)=(0.25*(cos(2*x)+cos(2*y))*TGVF(t)**2)

# in order to prevent different resolution on x and y

# set samples and isosamples values to the same small value

# to reduce number of arrows

set samples 20, 20

set isosamples 20,20

# create a temporary file with x y coordinates (work around)

# Warning! if you have a file fieldxy.tmp it will be overwritten

set table "fieldxy.tmp"

splot 1

unset table

set title "Velocity of Taylor-Green-Vortex"

plot "fieldxy.tmp" u 1:2:(TGVU1($1,$2)):(TGVU2($1,$2)) w vec notitle

pause -1 "Hit any key to continue.\n"

# set result to a file

set terminal postscript enhanced color

set output "taylor.green.vortex.u.eps"

replot

# return to the dislpay view again

set terminal x11
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# Plot pressure.

# Increase resolution.

set samples 50, 50

set isosamples 50,50

set cntrparam levels 10

set title "Pressure of Taylor-Green-Vortex"

set contour

splot TGVP(x,y) notitle

pause -1 "Hit any key to continue."

# Save result to a file.

set terminal postscript enhanced color

set output "taylor.green.vortex.p.eps"

replot

set terminal x11 # return to the display
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Figure 9: Taylor-Green-Vortex velocity u

D Useful macros

D.1 Norm macros

We de�ne an L2 norm on Ω ⊂ R2

34 〈Norm macros 34〉≡ (44 52 58b 64)

macro ML2D2Norm(u1,u2,Th) (sqrt(int2d(Th)(u1^2 + u2^2)))

// end of macro ML2D2Norm
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Figure 10: Taylor-Green-Vortex pressure p

D.2 Timer macros

In order to measure execution time, we need a FreeFem variable of type real[int]
variable(2), containing of two real values, which must be initialized with 0.

35 〈Timer macros 35〉≡ (44 52 53a 59a)

// In order to store execution time in a variable "timer", declare it as

// real[int] timer(2)

// and initialize it with 0

// The spent time will be stored in timer[1]

macro TimerStart(timer)

{

timer[1]=clock();

}

// End of macro TimerStart

macro TimerStop(timer)
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{

if(timer[1]!=0)

{

timer[0] = timer[0]+(clock()-timer[1]);

timer[1] = 0;

}

}// End of macro TimerStop
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D.3 Data storage macros

The next macro is used to store function data for visualization with gnuplot
(This is modi�ed code from the [2], example 3.2.)

37 〈Data storage macros 37〉≡ (44 52 58b 64)

// MESH is a mesh where finite elements of type FEM are defined.

// F is a function RxR -> R of type FEM.

// FILENAME is a name of the file where data will be stored.

// The data will be stored as lines in format " x y u(x,y) "

macro StorePlotData(Th, f, filename)

{

ofstream ff(filename);

fespace P1d1(Th,P1);

P1d1 interpF = f;

for (int i=0;i<Th.nt;i++)

{

for (int j=0; j <3; j++)

{

ff�Th[i][j].x � " "� Th[i][j].y� " " � interpF[][P1d1(i,j)]�endl;

}

ff � Th[i][0].x � " "� Th[i][0].y� " "�interpF[][P1d1(i,0)]�"\n\n\n";

}

}

// Create CSV file with results

macro CreateFunctionValuesCSV(path)

{

string sep = " ";

ofstream of(path);

of � "x" � sep � "y" � sep � "t";

of � sep � "u1" � sep � "u2" � sep � "p" � sep � "fem_i" � endl;

}

// EOM

// end of macro StorePlotData

// Store vector filed [u1,u2] and pressure into output stream as lines of format

// x y t u1(x,y,t) u2(x,y,t) p(x,y,t) fem_i

// x,y, are space coordinates, u1, u2, p functions values at time t

// fem_i index of finite element, in order to split data on blocks later

macro AppendFunctionVauesToCSV(Th, u1,u2, p, t, filename)

{

ofstream of(filename,append);

fespace P1d1(Th,P1);

P1d1 interpF1 = u1;

P1d1 interpF2 = u2;
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P1d1 interpP = p;

for (int i=0;i<Th.nt;i++)

{

for (int j=0; j <3; j++)

{

of � Th[i][j].x � " " � Th[i][j].y� " "� t;

of � " " � interpF1[][P1d1(i,j)];

of � " " � interpF2[][P1d1(i,j)];

of � " " � interpP[][P1d1(i,j)];

of � " " � i � endl;

}

}

}

// End of StoreVectorField macro

E Numerical Simulations of Stokes-Equations

We will perform some numerical simulation, in order to �nd out how di�erent
parameters, like viscosity ν, Mesh re�nement N and choice of the �nite dimen-
sional Spaces (Xh,Mh) ⊂ (X,M) in�uence the solution. As reference we will
take a Taylor-Green Vortex solution w, q at time t = 0. This function is a exact
solution of the Stokes equation

−ν∆u+∇p = f on Ω
divu = 0
u|∂Ω = g on ∂Ω

On Ω = [0, π] × [0, π], f = −(∂tw(x, y, 0) + w · ∇w)|t=0) and g(x, y) :=
w(x, y, 0).

We also will use (x, y) instead of (x1, x2), in order not to get confused between
mathematical calculation and de�nitions required by FreeFem++.

We de�ne body forces f(x, y) = (f1, f2)(x, y)

f(x, y) =
(
f1(x, y)
f2(x, y)

)
= −

((
∂tw1(x, 0)
∂tw2(x, 0)

)
+

(
w1

∂
∂xw1 + w2

∂
∂yw1

w1
∂
∂xw2 + w2

∂
∂yw2

))
(x, y, 0)

38 〈Stokes, de�ne f 38〉≡ (44)

func f1=-(TGVU1dt(0)+TGVU1(0)*TGVU1dx(0)+TGVU2(0)*TGVU1dy(0));

func f2=-(TGVU2dt(0)+TGVU1(0)*TGVU2dx(0)+TGVU2(0)*TGVU2dy(0));

38



We de�ne boundary conditions g(x, y) := (g1, g2)(x, y) = w(x, y, 0)

39a 〈Stokes, de�ne g 39a〉≡ (44)

func g1=TGVU1(0);

func g2=TGVU2(0);

For the performance measurement we will use two timers

39b 〈Stokes, de�ne timers 39b〉≡ (44 53a 59a)

// Declare timers (See timer macros for more information)

// One setup timer

real[int] setupTimer(2);

setupTimer = 0;

// One calculation timer

real[int] calculationTimer(2);

calculationTimer = 0;

Now we will construct an appropriate FEM space. First we de�ne space
domain Ω = (0, π)2 with uniform mesh and appropriate space re�nement.

39c 〈Stokes, mesh 39c〉≡ (44 53a 59a)

// Set default refinement values for the Mesh

int gridRefinment=20; // Space grid refinement.

// Change it by the values stored in parameter simulation (if necessary)

ItemStorageGet(params,"gridRefinment",gridRefinment);

TimerStart(setupTimer);

// define square domain [0,pi]x[0,pi]

mesh Th=square(gridRefinment,gridRefinment, [pi*x,pi*y]);

TimerStop(setupTimer);
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Then we de�ne functional FEM-spaces Xh and Mh on Ω. The velocity
space Xh is a vector �eld consisting of continuous of partially quadratic two
dimensional polynomial.

Xh = {v ∈ H1(Ω)2|vh|T = (P2)2∀T ∈ Th}

and the pressure space Mh consist of partial functions

Mh = {v ∈ H1(Ω)|vh|T = (P1)∀T ∈ Th}

Our solution consists of the velocity function u

Xh 3 u : Ω ⊂ R2 → R2

u =
(
u1

u2

)
and pressure functions p

Mh 3 p : Ω ⊂ R2 → R

We will also use test functions φ = (φ1, φ2) ∈ Xh and ψ ∈Mh

40 〈Stokes, FEM space and test function de�nitions 40〉≡ (44)

TimerStart(setupTimer);

fespace Xh(Th,[P2,P2]); // define finite space for u (velocity)

fespace Mh(Th,P1); // define finite space for p (pressure)

Xh [u1,u2]; // Define velocity function.

Xh [phi1,phi2]; // Define test functions for velocity space.

Mh p; // Define pressure function.

Mh psi; // Define test function for pressure space.

TimerStop(setupTimer);
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Now we will de�ne a variational formulation of the problem{
a(u, φ) + b(φ, p) = f(φ) ∀φ ∈ X
b(u, ψ) = 0 ∀ψ ∈M

with

a(v, φ) = −ν < ∆v, φ >

= ν

ˆ
Ω

[
∂

∂x
u1

∂

∂x
φ1 +

∂

∂y
u1

∂

∂y
φ1 +

∂

∂x
u2

∂

∂x
φ2 +

∂

∂y
u2

∂

∂y
φ2

]
dλ+

ˆ
∂Ω

R1ds

b(φ, p) = < φ,∇p >

= −
ˆ

Ω

∂φ1

∂x
pdλ−

ˆ
Ω

∂φ2

∂y
pdλ+

ˆ
∂Ω

R2ds

The appropriate boundary integrals
´
∂Ω
R1ds and

´
∂Ω
R2ds will be calcu-

lated automatically by FreeFem++ from boundary conditions g

41a 〈Stokes, variation formulation 41a〉≡ (44)

TimerStart(setupTimer);

problem Stokes ([u1,u2,p],[phi1,phi2,psi]) =

int2d(Th)(

+ nu * ( dx(u1)*dx(phi1) + dy(u1)*dy(phi1)

+ dx(u2)*dx(phi2) + dy(u2)*dy(phi2) )

- dx(phi1)*p - dy(phi2)*p // +b([phi1,phi2],p)

- dx(u1)*psi - dy(u2)*psi // +b([u1,u2],psi)

)

- int2d(Th) ( f1*phi1+f2*phi2)

// + on(1,2,3, 4,u1=0,u2=0) ;

+ on(1,2,3,4, u1=g1,u2=g2);

TimerStop(setupTimer);

W will solve equations and log calculation time.

41b 〈Stokes, solve 41b〉≡ (44)

TimerStart(calculationTimer);

// Calculate u

Stokes;

// Stop the timer

TimerStop(calculationTimer);
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After calculation we will calculate the absolute L2 error of our numerical
solution uh , which is uerr = ||u− uh||.

42a 〈Stokes, Calculate absolute L2 error for u 42a〉≡ (44)

// Calculate error function, which is difference between calculated and exact solutions

Xh [u1Err,u2Err]=[u1,u2]-[TGVU1(0),TGVU2(0)];

// Calculate and print L2 norm of the error.

real errNorm = ML2D2Norm(u1Err,u2Err,Th);

// Calculate interpolation of the exact solution.

real interpolatedUNorm = ML2D2Norm(TGVU1(0),TGVU1(0),Th);

// Print results

cout � "L2 norm of the absolute error = " � errNorm � endl;

cout � "L2 norm of the u = " � interpolatedUNorm � endl;

cout � "L2 norm of the relative error = " � errNorm/interpolatedUNorm � endl;

We store the absolute error uerr, calculation time, information about solver
and other parameters for simulation into special �le resultDataDir/resultFilename
for postprocessing. The default path of this �le is �./simulation.result.txt�, .

42b 〈Stokes, Store simulation results results 42b〉≡ (44)

string resultFilename="simulation.result.txt";

ItemStorageGet(params,"resultFilename",resultFilename);

ItemStorageAdd(params,"errUL2Norm",errNorm);

ItemStorageAdd(params,"interpolatedUL2Norm",interpolatedUNorm);

ItemStorageAdd(params,"solver","UMFPACK");

ItemStorageAdd(params,"Xh","P2");

ItemStorageAdd(params,"Mh","P1");

// Print setup time.

ItemStorageAdd(params,"setupTime",setupTimer[0]);

cout � "Setup time: " � setupTimer[0] � endl;

// Print calculation time.

cout � "Calculation time: " � calculationTimer[0] � endl;

ItemStorageAdd(params,"calculationTime",calculationTimer[0]);

ItemStorageStore(params,",",resultDataDir+"/"+resultFilename);
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If it is required by simulation parameters we will also store the calculated
function values

43a 〈Stokes, Store function values 43a〉≡ (44)

bool storeFunctionValues=false;

string functionValuesFilename="u.simulated.csv";

string meshFilename="mesh";

ItemStorageGet(params,"storeFunctionValues",storeFunctionValues);

ItemStorageGet(params,"meshFilename",meshFilename);

ItemStorageGet(params,"functionValuesFilename",functionValuesFilename);

string meshPath = resultDataDir+"/"+meshFilename;

string functionValuesPath = resultDataDir+"/"+functionValuesFilename;

// Store mesh remove previous values.

if(storeFunctionValues)

{

cout � "Store Mesh data to " � meshPath � "[.points,.faces]" � endl;

savemesh(Th,meshPath, [x,y,0]);

cout � "Create CVS with results " � functionValuesPath � endl;

CreateFunctionValuesCSV(functionValuesPath);

AppendFunctionVauesToCSV(Th,u1,u2,p,0,functionValuesPath);

}

If it is required we can plot the result of the simulation:

43b 〈Stokes, plot result 43b〉≡ (44 52 64)

// Flag indicating the at the end of the simulation the result must be plotted

bool usePlot = false;

ItemStorageGet(params,"usePlot",usePlot);

// Plot vector field.

if(usePlot)

{

plot([u1,u2]); // plot velocity vector field

}
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44 〈stokes.numeric.vs.exact.edp 44〉≡
〈Initialize Simulation 27a〉
〈Taylor-Green-Vortex 28〉
〈Taylor-Green-Vortex-dt 29〉
〈Taylor-Green-Vortex-dxdy 30〉
〈Stokes, de�ne f 38〉
〈Stokes, de�ne g 39a〉
〈Timer macros 35〉
〈Stokes, de�ne timers 39b〉
〈Stokes, mesh 39c〉
〈Stokes, FEM space and test function de�nitions 40〉
〈Stokes, variation formulation 41a〉
〈Stokes, solve 41b〉
〈Norm macros 34〉
〈Stokes, Calculate absolute L2 error for u 42a〉
〈Stokes, Store simulation results results 42b〉
〈Data storage macros 37〉
〈Stokes, Store function values 43a〉
〈Stokes, plot result 43b〉
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Additional �les:

• stokes.py. is a python-script for to produce automatically experiment
series with FreeFem++ script stokes.numeric.vs.exact.edp. For each ex-
periment the stokes.py script creates a separate directory such that it is
possible also to store function values for further analysis and visualization.
The main results of all stokes tests be stored in cvs stokes.result.csv for
postprocessing.

• stokes.r is a R-script was used for analyzing data of the experiment series
produce by stokes.py. Some results were visualized.

F Numerical simulation of the Oseen problem

The goal of this simulation is to solve a problem using an iterative method
described in the section Steady-State-Navier-Stokes equations

u · ∇u− ν∆u+∇p = 0
divu = 0
u|∂Ω = g(x, t)

on domain Ω = (0, 1)2 with g1 = 0.1 on Γ2 ∪Γ4 and u2 = 0 on ∂Ω, ν = 0.1 .
For the performance measurement we will use a timer

45a 〈Steady state Navier-Stokes, de�ne timers 45a〉≡ (52)

// Declare and initialize the timer (See timer macros for more information)

// One calculation timer

real[int] calculationTimer(2);

calculationTimer = 0;

On the domain Ω , we will construct an appropriate FEM mesh. We begin
with de�nition of the space domain Ω = (0, 1)2 and appropriate grid re�nements

45b 〈Steady state Navier-Stokes, mesh 45b〉≡ (52)

// Set default refinement values for the Mesh

int gridRefinment=20; // Space grid refinement.

// Change it by the values stored in simulation parameters (if necessary)

ItemStorageGet(params,"gridRefinment",gridRefinment);

// define square domain [0,1]x[0,1]

mesh Th=square(gridRefinment,gridRefinment);
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Then we de�ne a mixed FEM-spaces (Xh,Mh) on Ω. The velocity space
Xh is a vector �eld consists of continues functions, which are two dimensional
polynomial of second degree.

Xh = {v ∈ H1(Ω)2|vh|T = (P2)2}

and the pressure space Mh con sits of partially linear functions

Mh = {v ∈ H1(Ω)2|vh|T = (P1)}

Our solution consists of the velocity function u

Xh 3 u : Ω ⊂ R2 → R2

u =
(
u1

u2

)
and pressure functions p

Mh 3 p : Ω ⊂ R2 → R

We will also use test functions φ = (φ1, φ2) ∈ Xh and ψ ∈Mh and functions
up, pp for termporal storage of the results from the previous iteration step.

46 〈Steady state Navier-Stokes, FEM space and test function de�nitions 46〉≡ (52)

fespace Xh(Th,[P2,P2]); // Define finite element space for u (velocity)

fespace Mh(Th,P1); // Define finite element space for p (pressure)

fespace Yh(Th,P2); // Define finite element space for interpolations

Xh [u1,u2]; // Define velocity function.

Xh [up1,up2]; // Define velocity function for storage of previous step.

Xh [phi1,phi2]; // Define test functions for velocity space.

Mh p; // Define pressure function.

Mh pp; // Define pressure function for storage of previous step.

Mh psi; // Define test function for pressure space.
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Now we will de�ne a variation formulation of the problem{
N(u, u, φ) + a(u, φ) + b(φ, p) = 0 ∀φ ∈ Xh

b(u, ψ) = g(x, y) ∀ψ ∈Mh

with

N(v, u, φ) = < u×∇u, φ >
a(v, φ) = −ν < ∆v, φ >
b(φ, p) = < φ,∇p >

Which we will solve iteratively.
We will start the iteration with u = u0 = 0.
Then in each integration step we will solve an Oseen problem

{
N(uk, uk+1, φ) + a(uk+1, φ) + b(φ, p) = 0 ∀φ ∈ Xh

b(u, ψ) = g(x, y) ∀ψ ∈Mh

with given uk and

N(up, u, φ) =
ˆ

Ω

[
up,1

∂

∂x
u1φ1 + up

∂

∂y
u1φ1 + up,1

∂

∂x
u2φ2 + up,2

∂

∂y
u2φ2

]
dV

a(u, φ) = ν

ˆ
Ω

[
∂

∂x
u1

∂

∂x
φ1 +

∂

∂y
u1

∂

∂y
φ1 +

∂

∂x
u2

∂

∂x
φ2 +

∂

∂y
u2

∂

∂y
φ2

]
dV +

ˆ
∂Ω

R1ds

b(φ, p) = −
ˆ

Ω

∂φ1

∂x
pdV −

ˆ
Ω

∂φ2

∂y
pdV +

ˆ
∂Ω

R2ds

The appropriate boundary integrals
´
∂Ω
R1ds and

´
∂Ω
R2ds will be calcu-

lated automatically by FreeFem++ from boundary conditions g.
up stays for the previous step

47 〈Steady state Navier-Stokes, Oseen problem 47〉≡ (52)

int k=0; // iteration index

problem OseenProblem([u1,u2,p],[phi1,phi2,psi],init=k)

= int2d(Th)(

+ up1*dx(u1)*phi1+up2*dy(u1)*phi1 // Non linear part.

+ up1*dx(u2)*phi2+up2*dy(u2)*phi2 // Non linear part.

+ nu*(

dx(u1)*dx(phi1) + dy(u1)*dy(phi1) // Laplace operator.

+ dx(u2)*dx(phi2) + dy(u2)*dy(phi2) // Laplace operator.

) // laplace operator.

- p*dx(phi1) - p*dy(phi2) // +b([phi1,phi2],p)
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- dx(u1)*psi - dy(u2)*psi) // + b([u1,u2],psi)

+ on(2,4,u1=0.1,u2=0) // Boundary conditions.

+ on(1,3,u1=0,u2=0); // Boundary conditions.

We will de�ne maximal iteration number, which can be change using simu-

lation.params.txt �le from an external application.

48a 〈Steady state Navier-Stokes, setup iteration parameters 48a〉≡ (52)

int maxIterationNumber=20;

ItemStorageGet(params,"maxIterationNumber",maxIterationNumber);

In order to control quality of approximation we will compute L2 norm of the
function

fn(x) = N(un, un, φ) + a(un, φ) + b(φ, pn)

48b 〈Steady state Navier-Stokes, de�ne F norm 48b〉≡ (52)

real[int] fNorm(maxIterationNumber+1);

fNorm=-1;

// Note usually dx of u1 is not more continuous, try to find

// a better way to solve, my be through a high order interpolation

// of u1 and u

Xh [f1,f2]=[u1*dx(u1)+u2*dy(u1)-nu*(dxx(u1)+dyy(u1))+dx(p),

u1*dx(u2)+up2*dy(u2)-nu*(dxx(u2)+dyy(u2))+dy(p)];
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If required, we will also save intermediate results of calculations, instead of
time t we will store an iteration index k

49 〈Steady state Navier-Stokes, Init function value storage 49〉≡ (52)

bool storeFunctionValues=false;

string functionValuesFilename="u.simulated.csv";

string meshFilename="mesh";

ItemStorageGet(params,"storeFunctionValues",storeFunctionValues);

ItemStorageGet(params,"meshFilename",meshFilename);

ItemStorageGet(params,"functionValuesFilename",functionValuesFilename);

string meshPath = resultDataDir+"/"+meshFilename;

string functionValuesPath = resultDataDir+"/"+functionValuesFilename;

// Store mesh, remove previous values.

if(storeFunctionValues)

{

cout � "Store Mesh data to " � meshPath � "[.points,.faces]" � endl;

savemesh(Th,meshPath, [x,y,0]);

cout � "Create CVS with results " � functionValuesPath � endl;

CreateFunctionValuesCSV(functionValuesPath);

}
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Finally we will perform required iteration steps, saving each time results to
a �le (if required).

50 〈Steady state Navier-Stokes, perform iterations 50〉≡ (52)

// Init [u1,u2] with zero

[u1,u2]=[0,0];

Yh dxu1,dyu1,dxu2,dyu2; // Some functions for interpolation

TimerStart(calculationTimer);

for(k = 1; k <= maxIterationNumber;k++)

{

[up1,up2] = [u1,u2]; // Save previous results

OseenProblem; // Calculate ([u1,u2],p) depending on the previous values stored in ([up1,up2])

// Store result if required.

if(storeFunctionValues)

{

TimerStop(calculationTimer);

AppendFunctionVauesToCSV(Th,u1,u2,p,k,functionValuesPath);

TimerStart(calculationTimer);

}

// Calculate Norm of the result.

// [f1,f2]=[u1*dx(u1)+u2*dy(u1)-nu*(dxx(u1)+dyy(u1))+dx(p),

// u1*dx(u2)+up2*dy(u2)-nu*(dxx(u2)+dyy(u2))+dy(p)];

// fNorm[k]= ML2D2Norm(f1,f2,Th);

// Because the derivatives of u1,u2 are not more continues we will

// We will interpolate them.

dxu1 = dx(u1);

dyu1 = dy(u1);

dxu2 = dx(u2);

dyu2 = dy(u2);

[f1,f2]=[u1*dx(u1)+u2*dy(u1)-nu*(dx(dxu1)+dy(dyu1))+dx(p),

u1*dx(u2)+up2*dy(u2)-nu*(dx(dxu2)+dy(dyu2))+dy(p)];

fNorm[k]= ML2D2Norm(f1,f2,Th);

}

TimerStop(calculationTimer);
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The results of the simulation we will store into special �le resultDataDir/resultFilename
for postprocessing. The default path of this �le is �./simulation.result.txt�, .
Additionally we will store a �le with the name f.norm.csv in the resultDataDir
directory to analyze convergence of the method.

51 〈Steady state Navier-Stokes, store simulation results 51〉≡ (52)

string resultFilename="simulation.result.txt";

ItemStorageGet(params,"resultFilename",resultFilename);

ItemStorageAdd(params,"solver","UMFPACK");

ItemStorageAdd(params,"Xh","P2");

ItemStorageAdd(params,"Mh","P1");

// Print calculation time.

cout � "Calculation time: " � calculationTimer[0] � endl;

ItemStorageAdd(params,"calculationTime",calculationTimer[0]);

string fNormFilename = "f.norm.csv";

ItemStorageAdd(params,"fNormFilename",fNormFilename);

ItemStorageStore(params,",",resultDataDir+"/"+resultFilename);

// Store fNorm.

string fNormPath=resultDataDir+"/"+fNormFilename;

ofstream of(fNormPath);

string sep = " "; // Separator

of � "k" � sep � "fNorm" � endl;

for (int k=1;k<=maxIterationNumber;k++)

{

of � k � sep � fNorm[k]�endl;

}
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At the end we can plot the result. For this purpose we will reuse code from
the Stoke Simulation.

52 〈navier.stokes.ss.edp 52〉≡
〈Initialize Simulation 27a〉
〈Timer macros 35〉
〈Steady state Navier-Stokes, de�ne timers 45a〉
〈Steady state Navier-Stokes, mesh 45b〉
〈Steady state Navier-Stokes, FEM space and test function de�nitions 46〉
〈Steady state Navier-Stokes, Oseen problem 47〉
〈Steady state Navier-Stokes, setup iteration parameters 48a〉
〈Norm macros 34〉
〈Steady state Navier-Stokes, de�ne F norm 48b〉
〈Data storage macros 37〉
〈Steady state Navier-Stokes, Init function value storage 49〉
〈Steady state Navier-Stokes, perform iterations 50〉
〈Steady state Navier-Stokes, store simulation results 51〉
〈Stokes, plot result 43b〉
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Remark: After some experiments I �gured out, that it is hard to control the
quality of interpolation, at least with methods I used, because the derivative
of the resulting function is not more continuous. This part of the needs to be
improved.

Additional: navier.stokes.ss.py is used for automatize testing with di�erent
parameters, and to visualize a certain iteration step of certain experiment.

G Numerical simulation Taylor-Green-Vortex as
Navier-Stokes equations

The Taylor-Green-Vortex is an analytical solution of Navier-Stoke equations
∂tu+ u · ∇u− ν∆u+∇p = 0 on Ω× [0, T ]
divu = 0
u|∂Ω = g(x, t) on ∂Ω× [0, T ]

(12)

on the space domain domain (0, π)2

For the simulation we will use Taylor-Hood Mixed elements (P2(Ω)2, P1(Ω))
We will reuse a parts of the code containing mesh de�nitions, boundary

conditions and timers from the previous sections.

53a 〈navier.stokes.num.vs.exact.edp 53a〉≡ 58b .

〈Initialize Simulation 27a〉
〈Taylor-Green-Vortex 28〉
〈Timer macros 35〉
〈Stokes, de�ne timers 39b〉
〈Stokes, mesh 39c〉
We also need a time discretization of the Time space. The re�nement of the

time space [0, T ] is described through the variable timeStepNum.

53b 〈Navier Stokes, time discretization 53b〉≡ (58b 59a)

int timeStepNum=100;

ItemStorageGet(params,"timeStepNum",timeStepNum);
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We de�ne appropriate FEM element spaces on domain Ω, velocity u, pressure
p, test functions φ, ψ and some additional spaces to store results of the previous
iteration step.

54a 〈Navier Stokes, FEM space and test function de�nitions 54a〉≡ (58b)

TimerStart(setupTimer);

fespace Xh(Th,[P2,P2]); // define finite space for u (velocity)

fespace Mh(Th,P1); // define finite space for p (pressure)

Xh [u1,u2]; // Define velocity function.

Xh [phi1,phi2]; // Define test functions for velocity space.

Xh [up1,up2]; // Storage for "Previous velocity" in time iterations

Mh p; // Define pressure function.

Mh psi; // Define test function for pressure space.

TimerStop(setupTimer);

In each time step we will need to solve variation formulation of the problem
< 1

∆t (u
n+1 − un ◦Xn), φ > +ν < ∇un+1,∇φ > − < pn+1, divφ > =

−
´
∂Ω

∂
∂nu

n+1φds+
´
∂Ω

(φ · n)pds = on Ω,∀φ ∈ Xh

< divun+1, ψ > = 0 ∀ψ ∈Mh

un+1|∂Ω = g(x, t) on ∂Ω
We will start with u0 = w(x, 0) where w is an exact solution.

The length of the step is ∆t. Thus after timeStepNum iterations we
will calculate �nal velocity u(T ) and pressure p(T )

54b 〈Navier-Stokes, Iteration variables 54b〉≡ (58b)

int n = 0; // Iteration index.

real dt = T/timeStepNum;

real t=0;

real alpha=1/dt;

[u1,u2]=[TGVU1(0),TGVU2(0)]; // Set initial value.
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0 = < ∂tu
n+1 − un · ∇un, φ > +v < ∇un+1,∇φ > − < ∇φ, pn+1 > − < un+1,∇ψ >

≈ 1
∆t

ˆ
Ω

[
un+1

1 φ1 +
1

∆t
un+1

1 φ1

]
dV

ν

ˆ
Ω

[
∂

∂x
un+1

1

∂

∂x
φn+1

1 +
∂

∂y
un+1

1

∂

∂y
φ1 +

∂

∂x
un+1

2

∂

∂x
φ2 +

∂

∂y
un+1

2

∂

∂y
φ2

]
dV

−
ˆ

Ω

∂

∂x
φ1p

n+1dV −
ˆ

Ω

∂

∂y
φ2, p

n+1dV

−
ˆ

Ω

(
∂

∂x
un+1

1 ψdV −
ˆ

Ω

∂

∂y
un+1

2 ψdV

−
ˆ

Ω

convect((un1 , u
n
2 ),−∆t, un1 )φ1dV −

ˆ
Ω

convect((un1 , u
n
2 ),−∆t, un2 )φ2)

−
ˆ
∂Ω

∂

∂n
un+1φds+

ˆ
∂Ω

(φ · n)pn+1ds

55 〈Navier Stokes, step problem 55〉≡ (58b)

problem NS ([u1,u2,p],[phi1,phi2,psi],init=n) =

int2d(Th)(

alpha*( u1*phi1 + u2*phi2)

+ nu * ( dx(u1)*dx(phi1) + dy(u1)*dy(phi1)

+ dx(u2)*dx(phi2) + dy(u2)*dy(phi2) )

- dx(phi1)*p - dy(phi2)*p // +b([phi1,phi2],p)

- dx(u1)*psi - dy(u2)*psi // +b([u1,u2],psi)

)

+ int2d(Th) ( -alpha*convect([up1,up2],-dt,up1)*phi1 -alpha*convect([up1,up2],-dt,up2)*phi2 )

+ on(1,2,3,4, u1=TGVU1(t),u2=TGVU2(t));
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The computation of the boundary integrals +
´
∂Ω

∂
∂nu

n+1φds +´
∂Ω

(φ ·n)pds we will leave to FreeFem. The expression above we will
rewrite in FreeFem suitable notation.

• The value un+1 is the value to be calculated (In FreeFem++ [u1, u2])

• un is the previous calculated values (In FreeFem++ [up1, up2])

• +
´
∂Ω

∂
∂nu

n+1φds+
´
∂Ω

(φ · n)pds is replaced with on command.

• 1
∆t is in FreeFem++ α

If required, we will save intermediate calculation results, for each time t.

56 〈Navier-Stokes, Init function value storage 56〉≡ (58b 64)

bool storeFunctionValues=false;

string functionValuesFilename="u.simulated.csv";

string meshFilename="mesh";

ItemStorageGet(params,"storeFunctionValues",storeFunctionValues);

ItemStorageGet(params,"meshFilename",meshFilename);

ItemStorageGet(params,"functionValuesFilename",functionValuesFilename);

string meshPath = resultDataDir+"/"+meshFilename;

string functionValuesPath = resultDataDir+"/"+functionValuesFilename;

// Store mesh remove previous values.

if(storeFunctionValues)

{

cout � "Store Mesh data to " � meshPath � "[.points,.faces]" � endl;

savemesh(Th,meshPath, [x,y,0]);

cout � "Create CVS with results " � functionValuesPath � endl;

CreateFunctionValuesCSV(functionValuesPath);

p=TGVP(0);

AppendFunctionVauesToCSV(Th,u1,u2,p,0,functionValuesPath);

}
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Now we will perform the time iterations, during the iterations we will mea-
sure the calculation time and if it is required we will store calculated values to
the functionValuesFilename �le

57a 〈Navier-Stokes, perform iterations 57a〉≡ (58b)

TimerStart(calculationTimer);

for(n = 1; n <= timeStepNum;n++)

{

t=n*dt;

[up1,up2] = [u1,u2]; // Save previous results

NS; // Calculate ([u1,u2],p) depending on the previous values stored in ([up1,up2])

// Store result if required.

if(storeFunctionValues)

{

TimerStop(calculationTimer);

AppendFunctionVauesToCSV(Th,u1,u2,p,t,functionValuesPath);

TimerStart(calculationTimer);

}

// Calculate Norm of the result.

// [f1,f2]=[u1*dx(u1)+u2*dy(u1)-nu*(dxx(u1)+dyy(u1))+dx(p),

// u1*dx(u2)+up2*dy(u2)-nu*(dxx(u2)+dyy(u2))+dy(p)];

// fNorm[k]= ML2D2Norm(f1,f2,Th);

}

TimerStop(calculationTimer);

To compute the absolute errors we compute the L2(Ω) norm of the di�erence
uh(T ) − u(T ). Where uh(T ) is a simulated velocity u(T ) is the exact solution
of the Navier-Stoke problem.

57b 〈Navier-Stokes, calculate error 57b〉≡ (58b 64)

Xh [u1Err,u2Err]=[u1,u2]-[TGVU1(T),TGVU2(T)];

// Calculate and print L2 norm of the error.

real uNorm = ML2D2Norm(u1,u2,Th);

real errNorm = ML2D2Norm(u1Err,u2Err,Th);

cout � "L2 norm of the absolute error = " � errNorm � endl;

cout � "L2 norm of the u = " � uNorm � endl;

cout � "L2 norm of the relative error = " � errNorm/uNorm � endl;
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We will store result of simulation and simulation parameters to a �le �dataDir/resultFilename�,
which is usually �./simulation.result.txt�, for postprocessing.

58a 〈Navier-Stokes, Store parameters and results 58a〉≡ (58b 64)

string resultFilename="simulation.result.txt";

ItemStorageGet(params,"resultFilename",resultFilename);

ItemStorageAdd(params,"errL2Norm",errNorm);

ItemStorageAdd(params,"interpolatedUL2Norm",uNorm);

ItemStorageAdd(params,"solver","UMFPACK");

ItemStorageAdd(params,"Xh","P2");

ItemStorageAdd(params,"Mh","P1");

// Print setup time.

ItemStorageAdd(params,"setupTime",setupTimer[0]);

cout � "Setup time: " � setupTimer[0] � endl;

// Print calculation time.

cout � "Calculation time: " � calculationTimer[0] � endl;

ItemStorageAdd(params,"calculationTime",calculationTimer[0]);

ItemStorageStore(params,",",resultDataDir+"/"+resultFilename);

58b 〈navier.stokes.num.vs.exact.edp 53a〉+≡ / 53a

〈Navier Stokes, time discretization 53b〉
〈Navier Stokes, FEM space and test function de�nitions 54a〉
〈Navier-Stokes, Iteration variables 54b〉
〈Navier Stokes, step problem 55〉
〈Data storage macros 37〉
〈Navier-Stokes, Init function value storage 56〉
〈Navier-Stokes, perform iterations 57a〉
〈Norm macros 34〉
〈Navier-Stokes, calculate error 57b〉
〈Navier-Stokes, Store parameters and results 58a〉
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Additional �les: navier.stokes.py. This python scripts is used for automatic
simulations with di�erent parameters. It also contains code for visualization of
a certain simulation (experiment) and certain time t.

H Numerical simulation Taylor-Green-Vortex as
Navier-Stokes equations with relaxation.

We will simulate a relaxation Navier-Stoke equation


∂tu+ u · ∇u− ν∆u+∇p +ε2∂ttu+ ε2∂t∇p = f(x, t) on Ω× [0, T ]
divu = 0
u|∂Ω = g(x, t) on ∂Ω× [0, T ]

with g(x, t) = w(x, t) and f(x, t) = +ε2∂ttw(w, t) + ε2∂t∇q(w, t)
on the space domain Ω := [0, π]×[0, π], where m w, q is Taylor-Green
Vortex solution. The Taylor-Green Vortex w, q solves this equation,
so we can use it as a reference point, for analyzing the quality of the
numerical solution.

Like in the previous simulation we initialize the simulation and
de�ne the mesh. Again, the re�nement of the mesh is controlled over
the gridRe�nment variable. And the re�nement of the time domain
is controlled over the variable timeStepNum.

59a 〈navier.stokes.rx.num.vs.exact.edp 59a〉≡ 64 .

〈Initialize Simulation 27a〉
〈Taylor-Green-Vortex 28〉
〈Timer macros 35〉
〈Stokes, de�ne timers 39b〉
〈Stokes, mesh 39c〉
〈Navier Stokes, time discretization 53b〉

For our simulation we will need an additional parameter ε which can be
passed from an external program

59b 〈Navier Stokes rx, epsilon de�nition 59b〉≡ (64)

real epsilon=0.0001;

ItemStorageGet(params,"epsilon",epsilon);
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We will de�ne a body force function f(x, t) = ε∂ttw(w, t) + ε∂t∇q(w, t)
60a 〈Navier Stokes rx, f de�nition 60a〉≡ (64)

func real f1(real t)

{

(epsilon*TGVU1dtdt(t)+epsilon*TGVPdxdt(t));

}

func real f2(real t)

{

(epsilon*TGVU2dtdt(t)+epsilon*TGVPdydt(t));

}

For the simulation we will use Taylor-Hood mixed elements (P2(Ω)2, P1(Ω)),
but if necessary, they can be replaced by Crouzeix-Raviart elements. To do so,
we need to write P2b instead of P2. For our simulation we will need velocity u,
pressure p, test functions φ, ψ and some additional variables to store previous
steps in iterations.

60b 〈Navier Stokes rx, FEM space and test function de�nitions 60b〉≡ (64)

TimerStart(setupTimer);

fespace Xh(Th,[P2,P2]); // define finite space for u (velocity)

fespace Mh(Th,P1); // define finite space for p (pressure)

Xh [u1,u2]; // Define velocity function.

Xh [phi1,phi2]; // Define test functions for velocity space.

Xh [up1,up2]; // Storage for "Previous velocity" in time iterations

Xh [upp1,upp2]; // another addition storage for velocity (previous to previous)

Mh p; // Define pressure function.

Mh pp; // Here the previous pressure will be stored

Mh psi; // Define test function for pressure space.
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We will also initialize the function values u0, u−1, and p0 using exact solution
to keep the initial error as small as possible.

61 〈Navier-Stokes rx, Iteration variables 61〉≡ (64)

int n = 0; // Iteration index.

real dt = T/timeStepNum;

real t=0;

real alpha=1/dt;

[u1,u2]=[TGVU1(0),TGVU2(0)]; // Set initial value.

[up1,up2]=[TGVU1(-dt),TGVU2(-dt)];

p=TGVP(0);
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Similar to previous case we will need to solve in each time step the equation

0 = (∂tun+1 − un · ∇un, φ) + v(∇un+1,∇φ)− (∇φ, pn+1)− (un+1,∇ψ)− ε(pn+1, ψ)

≈ (
1

∆t
+

ε

∆t2
) < un+1, φ > +ν < ∇un+1,∇φ >

−(1 +
ε

∆t
) < divφ, pn+1 >

− 1
∆t

< convect(un,−∆t), φ >

+
ε

∆t2
< −2un + un−1, φ > +

ε

∆t
< divφ, pn >

−
ˆ
∂Ω

∂

∂n
un+1φds+

ˆ
∂Ω

(φ · n)pds+
ε

∆t2

ˆ
∂Ω

∂

∂n
(−2un + un−1)φds− ε

∆t

ˆ
∂Ω

(φ · n)pnds

− < f, φ >

The long form of the equation, without boundary integrals is

0 = < ∂tu
n+1 − un · ∇un, φ > +v < ∇un+1,∇φ > − < ∇φ, pn+1 > − < un+1,∇ψ >

≈ (
1

∆t
+

ε

∆t2
)
ˆ

Ω

[
un+1

1 φ1 + un+1
2 φ2

]
dV

ν

ˆ
Ω

[
∂

∂x
un+1

1

∂

∂x
φn+1

1 +
∂

∂y
un+1

1

∂

∂y
φ1 +

∂

∂x
un+1

2

∂

∂x
φ2 +

∂

∂y
un+1

2

∂

∂y
φ2

]
dV

−(1 +
ε

∆t
)
[ˆ

Ω

∂

∂x
φ1p

n+1dV +
ˆ

Ω

∂

∂y
φ2, p

n+1dV

]
−
ˆ

Ω

∂

∂x
un+1

1 ψdV −
ˆ

Ω

∂

∂y
un+1

2 ψdV

−
ˆ

Ω

convect((un1 , u
n
2 ),−∆t, un1 )φ1dV −

ˆ
Ω

convect((un1 , u
n
2 ),−∆t, un2 )φ2)

− 2ε
∆t2

ˆ
Ω

[
un1φ1dV +

1
∆t

un2φ2

]
dV +

ε

∆t2

ˆ
Ω

[
un−1

1 φ1dV +
1

∆t
un−1

2 φ2

]
dV

+
ε

∆t

ˆ
Ω

[
∂

∂x
φ1p

n +
∂

∂y
φpn+1

]
dV

62 〈Navier Stokes rx, step problem 62〉≡ (64)

problem NSrx ([u1,u2,p],[phi1,phi2,psi],init=n)

= int2d(Th)

(

(alpha+epsilon*alpha^2)*( u1*phi1 + u2*phi2)

+ nu *

(

dx(u1)*dx(phi1) + dy(u1)*dy(phi1)

+ dx(u2)*dx(phi2) + dy(u2)*dy(phi2)

)
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- (1+epsilon*alpha)*(p*dx(phi1) + p*dy(phi2)) // +b(phi,p)

- dx(u1)*psi- dy(u2)*psi // +b([u1,u2],psi) // +b(u,psi)

)

+ int2d(Th)

(

-alpha*convect([up1,up2],-dt,up1)*phi1

-alpha*convect([up1,up2],-dt,up2)*phi2

-(2*epsilon*alpha^2)*up1*phi1

-(2*epsilon*alpha^2)*up2*phi2

+(epsilon*alpha^2)*upp1*phi1

+(epsilon*alpha^2)*upp2*phi2

+(epsilon*alpha)*(pp*dx(phi1) + pp*dy(phi2))

-f1(t)*phi1-f2(t)*phi2

)

+ on(1,2,3,4, u1=TGVU1(t),u2=TGVU2(t));

TimerStop(setupTimer);

Now we will perform the time iteration, during the iterations we will measure
the calculation time and if it is required we will store calculated values to a �le.

63 〈Navier-Stokes nx, perform iterations 63〉≡ (64)

TimerStart(calculationTimer);

for(n = 1; n <= timeStepNum;n++)

{

t=n*dt;

[upp1,upp2] = [up1,up2]; // Save previous results

[up1,up2] = [u1,u2];

pp = p;

NSrx; // Calculate ([u1,u2],p)

// Store result if required.

if(storeFunctionValues)

{

TimerStop(calculationTimer);

AppendFunctionVauesToCSV(Th,u1,u2,p,t,functionValuesPath);

TimerStart(calculationTimer);

}

}

TimerStop(calculationTimer);
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Finlay, we will compute L2(Ω)2 , norm of the error uh(T )− u(T ) and store
results like in previous simulation.

We will also plot a �nal result if required.

64 〈navier.stokes.rx.num.vs.exact.edp 59a〉+≡ / 59a

〈Navier Stokes rx, epsilon de�nition 59b〉
〈Taylor-Green-Vortex-u-dtdt 31a〉
〈Taylor-Green-Vortex-grad-p-dt 31b〉
〈Navier Stokes rx, f de�nition 60a〉
〈Navier Stokes rx, FEM space and test function de�nitions 60b〉
〈Navier-Stokes rx, Iteration variables 61〉
〈Navier Stokes rx, step problem 62〉
〈Data storage macros 37〉
〈Navier-Stokes, Init function value storage 56〉
〈Navier-Stokes nx, perform iterations 63〉
〈Norm macros 34〉
〈Navier-Stokes, calculate error 57b〉
〈Navier-Stokes, Store parameters and results 58a〉
〈Stokes, plot result 43b〉

Additional �les: navier.stokes.rx.py. This python scripts is used for auto-
matic simulations with di�erent parameters. It also contains code for visual-
ization of a certain simulation (experiment) and certain time t. Additionally it
contains code to make a animation from the simulation and stored free codecs
Dirac and Theora. It use gnuplot for visualization of a the function at certain
point t and then combine them together using a free and open source program
�mpeg.

I Custom Libraries:

For the automatic tests and postprocessing I developed special libraries, which
are used in the scripts stokes.py, navier.stokes.ss.py, navier.stokes.py and navier.stokes.rx.py.

ItemStorage: C++

ItemStorage war written for FreeFem in order to exchange data between FreeFem
script and external programs in convenient way. The Idea of this library is to be
able to produce a large number of simulation with di�erent parameters and then
store result for postprocessing. Technically parameter to be pass, are stored in
a �le in name,�value� format.

ItemStorage: Python

The python module itemstorage.py is used to interchange data with FreeFem.
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Experiment: Python

The module experiment is used to launch a FreeFEM script with certain pa-
rameters. It is used in all automatic scripts.

ExperimentResult: Python

The module experimentresult.py is used in python postprocessing scripts, to
search directories and collect the results of the previous experiments. This data
can be than stored as a .csv �le for data analysis.

Plot: Python

The module plot is used for data visualization. It helps for example to visualize
velocity u or pressure p of certain experiment at certain time t and to produce
animations for dynamical simulations.
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