Training. Relaxation finite element schemes for the incompressible Navier-Stokes equations

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni

University of Nice Sophia-Antipolis

16. Juli 09

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MQ (P

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. Methodology

Outline

Introduction

- Navier-Stokes
- Relaxation Finite Element Schemes for The Incompressible Navier-Stokes equations.
- Implementation and Software.
- Methodology
- 2 Stokes Equations
- 3 Steady State Navier-Stokes Equations
- Incompressible Navier-Stokes Equations
- 5 Navier-Stokes equations with relaxation

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation

Navier-Stokes

Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. Methodology

(日) (同) (日) (日)

Incompressible Navier-Stokes Equations

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p &= f(x, t) \text{ on } \Omega \times [0, T] \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \text{ on } \partial \Omega \times [0, T] \end{cases}$$
(1)

- $\bullet \ \mathbb{R}^2 \supset \Omega$ space domain
- $[0, T] \subset \mathbb{R}$ time domain
- $u: \Omega \times [0, T] \longrightarrow \mathbb{R}^2$, $(x, t) \mapsto u(x, t)$ velocity
- $p: \Omega \times [0, T] \longrightarrow \mathbb{R}$, $(x, t) \mapsto p(x, t)$ pressure
- div u = 0 describes incompressibility of the fluid.
- Given: Ω , T, f, g, ν
- Find: velocity *u* and pressure *p*

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. Methodology

Navier-Stokes Equations with Relaxation.

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p + \varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$
(2)

- $u: \Omega \times [0, T] \longrightarrow \mathbb{R}^2$, $(x, t) \mapsto u(x, t)$ velocity
- $p: \Omega \times [0, T] \longrightarrow \mathbb{R}$, $(x, t) \mapsto p(x, t)$ pressure
- Given: Ω, Τ, f, g, ν
- Find: *u* and *p*.

Advantage

Better description of the physics

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. Methodology

Implementation and Software

Open Source and Free Software:

- Numerics: FreeFem++.
- Visualization: FreeFem++, gnuplot, R, (OpenDX)
- IDE: FreeFem++-cs, Eclipse.
- Publishing: LATEX, LYX, latex-beamer, Inkscape, TextText.
- Version Control System: subversion.
- Programming Languages: FreeFem++, python, C++, R.
- Programming paradigm: Literate Programming

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. **Methodology**

< ロ > < 同 > < 回 > < 回 > < 回 > <

MQ (P

- Fix the goal. Get Familar with the problem.
- Collect Information. Find the starting point.
- Go step by step increasing the complexity of the problem.

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p + \varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. **Methodology**

< ロ > < 同 > < 回 > < 回 > < 回 > <

MQ (P

- Fix the goal. Get Familar with the problem.
- Collect Information. Find the starting point.
- Go step by step increasing the complexity of the problem.

$$egin{aligned} &\partial_t u + u \cdot
abla u -
u \Delta u +
abla p + arepsilon \partial_{tt} u + arepsilon \partial_t
abla p &= f(x,t) \ & ext{div} u &= 0 \ & ext{u}|_{\partial\Omega} &= g(x,t) \end{aligned}$$

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. **Methodology**

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

MQ (P

- Fix the goal. Get Familar with the problem.
- Collect Information. Find the starting point.
- Go step by step increasing the complexity of the problem.

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p + \varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. **Methodology**

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

MQ (P

- Fix the goal. Get Familar with the problem.
- Collect Information. Find the starting point.
- Go step by step increasing the complexity of the problem.

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p + \varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$

Stokes Equations Steady State Navier-Stokes Equations Incompressible Navier-Stokes Equations Navier-Stokes equations with relaxation Navier-Stokes Relaxation Finite Element Schemes for The Incompressible N Implementation and Software. **Methodology**

< ロ > < 同 > < 回 > < 回 > < 回 > <

MQ (P

- Fix the goal. Get Familar with the problem.
- Collect Information. Find the starting point.
- Go step by step increasing the complexity of the problem.

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p + \varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$

Outline

- Navier-Stokes
- Relaxation Finite Element Schemes for The Incompressible Navier-Stokes equations.
- Implementation and Software.
- Methodology

2 Stokes Equations

- 3 Steady State Navier-Stokes Equations
- Incompressible Navier-Stokes Equations
- 5 Navier-Stokes equations with relaxation

• □ ▶ • • □ ▶ • • □ ▶

Stokes equations

$$\begin{cases} -\nu\Delta \tilde{u} + \nabla p &= \tilde{f}(x,t) \\ \operatorname{div} \tilde{u} &= 0 \\ \tilde{u}|_{\partial\Omega} &= \tilde{g}(x,t) \end{cases}$$

Bring the equation in tho the form

$$\begin{cases} -\nu\Delta u + \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial\Omega} &= 0 \end{cases}$$

In order to solve this equation we need to introduce some new concepts

- Mixed Finite elements for variational formulation
- Inf-sup conditions

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni 🚽 Training. Relaxation finite element schemes for the incom

<ロト < 同ト < ヨト < ヨト -

DQ P

Mixed Finite elements, Variational Formulation

$$\begin{cases} -\nu\Delta u + \nabla p &= f(x,t) \quad | \cdot \phi \in X, \ \int_{\Omega} \\ \operatorname{div} u &= 0 \quad | \cdot \psi \in M, \ \int_{\Omega} \\ u|_{\partial\Omega} &= 0 \end{cases}$$

- Space for Velocity $u: X = H^1(\Omega)^2$
- Space for pressure $M = \{q \in L^2(\Omega) : \int_\Omega q dx = 0\}$

$$\begin{cases} \mathsf{a}(u,\phi) + \mathsf{b}(\phi,p) &= \mathsf{F}(\phi) \quad \forall \phi \in X \\ \mathsf{b}(u,\psi) &= \mathsf{0} \quad \forall \psi \in M \end{cases}$$

with

$$\mathsf{a}(\mathsf{v},\phi)=
u <
abla \mathsf{v},
abla \phi >, \qquad \mathsf{b}(\phi,\psi)= - < \mathsf{div}\phi, \psi > 0$$

イロト イポト イヨト イヨト

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

Inf-Sup, Existence and Uniqueness of the Solution

$$\begin{cases} \mathsf{a}(u,\phi) + \mathsf{b}(\phi,p) &= \mathsf{F}(\phi) \quad \forall \phi \in X \\ \mathsf{b}(u,\psi) &= 0 \quad \forall \psi \in M \end{cases}$$

Solve equations for $u \in Z = \{\phi \in X | b(\phi, \psi) = 0 \quad \forall \psi \in M\}$, that means solve

$$a(u,\phi) + \underline{b}(\phi,p) = F(\phi) \quad \forall \phi \in Z$$

Solution exists due to coercivity and continuity of $a(u, \phi)$ Use u to solve

$$b(\phi, p) = F(\phi) - a(u, \phi) \qquad \forall \phi \in X$$

Problem: ϕ and p are from different spaces: Solution: use inf-sup-Condition $\sup_{v \in X} \frac{b(\phi, \psi)}{||\phi||_H} \ge \alpha ||\psi||_M \quad \forall v \in X$ instead of coercivity

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni 🚽 Training. Relaxation finite element schemes for the incom

Relationship between Inf-Sup and Coercivity

Let c(u, v) be an coercive bilinear form in a Hilbert space V, scalar product $\langle \rangle_H$ and appropriate norm $|| \cdot ||_V$. than we have

$$c(u, v) \geq \alpha ||u||_{H} ||v||_{H} \quad \forall u, v \in H$$

$$\implies \frac{c(u, v)}{||v||_{H}} \geq \alpha ||u||_{H} \quad \forall u, v \in H$$

$$\implies \sup_{v \in H} \frac{c(u, v)}{||v||_{H}} \geq \alpha ||u||_{H} \quad \forall u$$

For existence and uniqueness of $b(\phi,p)=F(\phi)-a(u,\phi)$ $orall \phi\in X$

$$\implies \sup_{\boldsymbol{\nu} \in \boldsymbol{X}} \frac{b(\phi, \psi)}{||\phi||_{\boldsymbol{H}}} \ge \alpha ||\psi||_{\boldsymbol{M}} \quad \forall \boldsymbol{\nu} \in \boldsymbol{X}$$

is enough.

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

イロト イポト イヨト イヨト

Stokes Equations, Summary

Stokes equations	Poisson's equations			
$\begin{cases} -\nu\Delta u + \nabla p &= f(x,t) \\ \operatorname{div} u &= 0 \\ u _{\partial\Omega} &= 0 \end{cases}$	$\begin{cases} -\nu\Delta u &= f(x,t) \\ u _{\partial\Omega} &= 0 \end{cases}$			
Mixed FEM:	"not mixed" FEM			
$\begin{cases} a(u,\phi) + b(\phi,p) &= F(\phi), \forall \phi \in X \\ b(u,\psi) &= 0, \forall \psi \in M \end{cases}$	$a(u,\phi)+=F(\phi),\forall\phi\in X$			
Inf-Sup	Coercivity			
$\sup_{\boldsymbol{v}\in\boldsymbol{X}}\frac{\boldsymbol{b}(\boldsymbol{\phi},\boldsymbol{\psi})}{ \boldsymbol{\phi} _{\boldsymbol{H}}} \geq \alpha \boldsymbol{\psi} _{\boldsymbol{M}}, \forall \boldsymbol{v}\in\boldsymbol{X}$	$a(u,v) \ge \alpha u _X v _X$			

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

イロト イポト イヨト イヨト

900

Э

Stokes Equations, Remarks to Numerics

$$\begin{cases} -\nu\Delta u + \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial\Omega} &= 0 \end{cases}$$

• divu = 0. X_h is not a subspace of the Solution!

- Source of instabilities.
- Construction of divergence preserving FEM-spaces of high order of precision is not simple
- Possible solutions:
 - Relaxation of the divergence free condition ${\rm div}\,upprox {\rm div}\,u+arepsilon\,u$

• Special spaces like e.g. Crouzeix-Raviart for lower order precision

Stokes Equations simulations, Construction of Exact Solution

Taylor-Green Vortex

$$\begin{cases} \partial_t w + w \cdot \nabla w - \nu \Delta w + \nabla p &= 0\\ \operatorname{div} w &= 0\\ w|_{\partial \Omega} &= w|_{\partial \Omega} \end{cases}$$

Stokes equations

$$\begin{cases} -\nu\Delta w + \nabla p = \underbrace{-(\partial_t w + w \cdot \nabla w)}_{f(x)}|_{t=c} \\ \operatorname{div} w = 0 \\ w|_{\partial\Omega} = w|_{\partial\Omega,t=c} \end{cases}$$

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

Taylor-Green Vortex, Velocity

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni

Training. Relaxation finite element schemes for the incom

900

Taylor-Green Vortex, Pressure

Pressure of Taylor-Green-Vortex

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

< ロ > < 同 > < 回 > < 回 >

900

Stokes Equations, Simulations

Mixed FEM: Taylor-Hood $X_{h} = \{\phi \in H^{1}([0,\pi])^{2} : \phi|_{T} \in P^{2} \forall T \in T_{h}\}$ $M_{h} = \{\psi \in H^{1}([0,\pi]) : \psi|_{T} \in P^{1} \forall T \in T_{h}\}$ Mesh: $N \times N$ uniform mesh Parameters:

ν	10	1.0	10-	•1	10^{-2}	10 ⁻³	10-4	10 ⁻⁵	10^{-6}	0
Ν	10	15	20	25	30	40				

Analytical reference: Taylor-Green Vortex

イロト イポト イラト イラト

Stokes Equations, Postprocessing of Simulations

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training.

ng. Relaxation finite element schemes for the incom

SQR

Stokes Equations, Postprocessing

Influence of grid refinement on relative error, Taylor-Hood $X_{h} = \{ \phi \in H^{1}([0, \pi])^{2} : \phi|_{T} \in P^{2} \forall T \in T_{h} \},$ $M_{h} = \{ \psi \in H^{1}([0, \pi]) : \psi|_{T} \in P^{1} \forall T \in T_{h} \}$

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training.

ng. Relaxation finite element schemes for the incom

Outline

- Navier-Stokes
- Relaxation Finite Element Schemes for The Incompressible Navier-Stokes equations.
- Implementation and Software.
- Methodology
- 2 Stokes Equations
- Steady State Navier-Stokes Equations
 - Incompressible Navier-Stokes Equations
- 5 Navier-Stokes equations with relaxation

nar

• □ ▶ • □ ▶ • □ ▶ •

Steady State Navier-Stokes Equations

$$\begin{cases} u \cdot \nabla u - \nu \Delta u + \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$

- Problem: Nonlinear part $u \cdot \nabla u$.
- Possible Solution: Iterative method $u^n \cdot \nabla u^{n+1} - \nu \Delta u^{n+1} + \nabla p^{n+1} = f(x, t)$ (Oseen Problem)
 - Required: not too small ν , small f
- Possible reference, exact solution: Taylor-Green Vortex w

$$\begin{cases} w \cdot \nabla w - \nu \Delta w + \nabla p &= \underbrace{\partial_t w}_{f(x)} |_{t=c} \\ \operatorname{div} w &= 0 \\ w |_{\partial \Omega} &= w |_{\partial \Omega, t=0} \\ \text{div} w &= t \text{ for all } t \text{ for all$$

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni

Relaxation finite element schemes for the inco

Steady State Navier-Stokes equations, Simulations

Mixed FEM: Taylor-Hood $X_{h} = \{\phi \in H^{1}([0,\pi])^{2} : \phi | \tau \in P^{2} \forall T \in T_{h}\}$ $M_{h} = \{\psi \in H^{1}([0,\pi]) : \psi | \tau \in P^{1} \forall T \in T_{h}\}$ Mesh: $N \times N$ uniform mesh

Steady State Navier-Stokes equations.

Simulation with k = 20, grid=10x10: $\nu = 0.1$ left, $\nu = 10^{-7}$ right, $X_h = P2$, $M_h = P1$

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

< 日 > < 同 > < 三 > < 三 > < 三 > <

nar

Outline

- Navier-Stokes
- Relaxation Finite Element Schemes for The Incompressible Navier-Stokes equations.
- Implementation and Software.
- Methodology
- 2 Stokes Equations
- 3 Steady State Navier-Stokes Equations
- Incompressible Navier-Stokes Equations
- 5 Navier-Stokes equations with relaxation

• □ ▶ • • □ ▶ • • □ ▶

Incompressible Navier-Stokes Equations

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p &= f(x, t) \\ \operatorname{div} u &= 0 \\ u|_{\partial \Omega} &= g(x, t) \end{cases}$$

- Problem: Nonlinear part $u \cdot \nabla u$ and time derivative:
- Possible Solution: Discretization in time and linearisation (FreeFem++ convex operator)

$$\underbrace{\frac{\partial_t u + u^n \cdot \nabla u^n}{\frac{1}{\Delta t}(u^{n+1} - u^n \circ X^n)}}_{\frac{1}{\Delta t}(u^{n+1} - u^n \circ X^n)} - \nu \Delta u^{n+1} + \nabla p^{n+1} = f^{n+1}$$

• Possible reference: Taylor-Green Vortex

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni 🚽 Training. Relaxation finite element schemes for the incom

Outline

Introduction

- Navier-Stokes
- Relaxation Finite Element Schemes for The Incompressible Navier-Stokes equations.
- Implementation and Software.
- Methodology
- 2 Stokes Equations
- 3 Steady State Navier-Stokes Equations
- Incompressible Navier-Stokes Equations
- 5 Navier-Stokes equations with relaxation

• □ ▶ • □ ▶ • □ ▶ •

Navier Stokes equations with Relaxation

$$\begin{cases} \partial_t u + u \cdot \nabla u - \nu \Delta u + \nabla p & + \varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p = f(x, t) \\ divu &= 0 \\ u|_{\partial\Omega} &= g(x, t) \quad \text{on } \partial\Omega \times [0, T] \end{cases}$$

- Problems: Time discretization $\varepsilon \partial_{tt} u + \varepsilon \partial_t \nabla p$
- ullet Stabilities and Instabilities caused by arepsilon parameters
- Possible solution: FD for time discretization special divergence preserving FEM spaces e.g. Crouzeix-Raviart
- Possible reference: Taylor-Green Vortex

$$\begin{cases} \partial_t w + w \cdot \nabla w - \nu \Delta w + \nabla p + \varepsilon \partial_{tt} w + \varepsilon \partial_t \nabla q &= \underbrace{\varepsilon \partial_{tt} w + \varepsilon \partial_t \nabla q}_{f(x,t)} \\ \text{div} w = 0, & \quad \text{or } v \in \mathbb{P} \quad \text{or } v \in \mathbb{P} \quad \text{or } v \in \mathbb{P} \end{cases}$$

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

Variational Formulation

$$0 \approx \frac{1}{\Delta t} < u^{n+1}, \phi > + \frac{\varepsilon}{\Delta t^2} < u^{n+1}, \phi > + \nu < \nabla u^{n+1}, \nabla \phi > \\ - < \operatorname{div}\phi, p^{n+1} > + \frac{\varepsilon}{\Delta t} < \operatorname{div}\phi, p^{n+1} > \\ - \frac{1}{\Delta t} < \operatorname{convect}(u^n, -\Delta t), \phi > \\ + \frac{\varepsilon}{\Delta t^2} < -2u^n + u^{n-1}, \phi > - \frac{\varepsilon}{\Delta t} < \operatorname{div}\phi, p^{n+1} > \\ + \int_{\partial\Omega} \frac{\partial}{\partial n} u^{n+1}\phi ds + \int_{\partial\Omega} (\phi \cdot n) p ds \\ + \frac{\varepsilon}{\Delta t^2} \int_{\partial\Omega} \frac{\partial}{\partial n} (-2u^n + u^{n-1})\phi ds - \frac{\varepsilon}{\Delta t} \int_{\partial\Omega} (\phi \cdot n) p^n ds$$

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation finite element schemes for the incom

イロト イポト イヨト イヨト

990

Э