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Incompressible Navier-Stokes Equations


∂tu + u · ∇u − ν∆u +∇p = f (x , t) on Ω× [0,T ]

divu = 0

u|∂Ω = g(x , t) on ∂Ω× [0,T ]

(1)

R2 ⊃ Ω space domain

[0,T ] ⊂ R time domain

u : Ω× [0,T ] −→ R2, (x , t) 7→ u(x , t) velocity

p : Ω× [0,T ] −→ R, (x , t) 7→ p(x , t) pressure

divu = 0 describes incompressibility of the �uid.

Given: Ω, T , f , g , ν

Find: velocity u and pressure p
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Navier-Stokes Equations with Relaxation.


∂tu + u · ∇u − ν∆u +∇p+ε∂ttu + ε∂t∇p = f (x , t)

divu = 0

u|∂Ω = g(x , t)

(2)

u : Ω× [0,T ] −→ R2, (x , t) 7→ u(x , t) velocity

p : Ω× [0,T ] −→ R, (x , t) 7→ p(x , t) pressure

Given: Ω, T , f , g , ν

Find: u and p.

Advantage

Better description of the physics
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Implementation and Software

Open Source and Free Software:

Numerics: FreeFem++.

Visualization: FreeFem++, gnuplot,R, (OpenDX)

IDE: FreeFem++-cs, Eclipse.

Publishing: LATEX, LYX, latex-beamer, Inkscape,TextText.

Version Control System: subversion.

Programming Languages: FreeFem++, python, C++, R.

Programming paradigm: Literate Programming
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Methodology

Fix the goal. Get Familar with the problem.

Collect Information. Find the starting point.

Go step by step increasing the complexity of the problem.
∂tu + u · ∇u − ν∆u +∇p + ε∂ttu + ε∂t∇p = f (x , t)

divu = 0

u|∂Ω = g(x , t)
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Stokes equations


−ν∆ũ +∇p = f̃ (x , t)

divũ = 0

ũ|∂Ω = g̃(x , t)

Bring the equation in tho the form
−ν∆u +∇p = f (x , t)

divu = 0

u|∂Ω = 0

In order to solve this equation we need to introduce some new

concepts

Mixed Finite elements for variational formulation

Inf-sup conditions
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Mixed Finite elements, Variational Formulation


−ν∆u +∇p = f (x , t) | · φ ∈ X ,

´
Ω

divu = 0 | · ψ ∈ M,
´

Ω

u|∂Ω = 0

Space for Velocity u: X = H1(Ω)2

Space for pressure M = {q ∈ L2(Ω) :
´

Ω qdx = 0}{
a(u, φ) + b(φ, p) = F (φ) ∀φ ∈ X

b(u, ψ) = 0 ∀ψ ∈ M

with

a(v , φ) = ν < ∇v ,∇φ >, b(φ, ψ) = − < divφ, ψ >
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Inf-Sup, Existence and Uniqueness of the Solution

{
a(u, φ) + b(φ, p) = F (φ) ∀φ ∈ X

b(u, ψ) = 0 ∀ψ ∈ M

Solve equations for u ∈ Z = {φ ∈ X |b(φ, ψ) = 0 ∀ψ ∈ M}, that
means solve

a(u, φ) +����b(φ, p) = F (φ) ∀φ ∈ Z

Solution exists due to coercivity and continuity of a(u, φ)
Use u to solve

b(φ, p) = F (φ)− a(u, φ) ∀φ ∈ X

Problem: φ and p are from di�erent spaces:

Solution: use inf-sup-Condition supv∈X
b(φ,ψ)
||φ||H ≥ α||ψ||M ∀v ∈ X

instead of coercivity
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Relationship between Inf-Sup and Coercivity

Let c(u, v) be an coercive bilinear form in a Hilbert space V , scalar

product <>H and appropriate norm || · ||V . than we have

c(u, v) ≥ α||u||H ||v ||H ∀u, v ∈ H

=⇒ c(u, v)

||v ||H
≥ α||u||H ∀u, v ∈ H

=⇒ sup
v∈H

c(u, v)

||v ||H
≥ α||u||H ∀u

For existence and uniqueness of b(φ, p) = F (φ)− a(u, φ)∀φ ∈ X

=⇒ sup
v∈X

b(φ, ψ)

||φ||H
≥ α||ψ||M ∀v ∈ X

is enough.
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Stokes Equations, Summary

Stokes equations Poisson's equations
−ν∆u +∇p = f (x , t)

divu = 0

u|∂Ω = 0

{
−ν∆u = f (x , t)

u|∂Ω = 0

Mixed FEM: �not mixed� FEM{
a(u, φ) + b(φ, p) = F (φ), ∀φ ∈ X

b(u, ψ) = 0, ∀ψ ∈ M
a(u, φ)+ = F (φ), ∀φ ∈ X

Inf-Sup Coercivity

supv∈X
b(φ,ψ)
||φ||H ≥ α||ψ||M , ∀v ∈ X a(u, v) ≥ α||u||X ||v ||X
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Stokes Equations, Remarks to Numerics


−ν∆u +∇p = f (x , t)

divu = 0

u|∂Ω = 0

divu = 0. Xh is not a subspace of the Solution!

Source of instabilities.

Construction of divergence preserving FEM-spaces of high

order of precision is not simple

Possible solutions:

Relaxation of the divergence free condition divu ≈ divu + εu
Special spaces like e.g. Crouzeix-Raviart for lower order

precision
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Stokes Equations simulations, Construction of Exact

Solution

Taylor-Green Vortex
∂tw + w · ∇w − ν∆w +∇p = 0

divw = 0

w |∂Ω = w |∂Ω

Stokes equations
−ν∆w +∇p = −(∂tw + w · ∇w)︸ ︷︷ ︸

f (x)

|t=c

divw = 0

w |∂Ω = w |∂Ω,t=c
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Taylor-Green Vortex, Velocity
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Taylor-Green Vortex, Pressure
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Stokes Equations, Simulations

Mixed FEM: Taylor-Hood

Xh = {φ ∈ H1([0, π])2 : φ|T ∈ P2∀T ∈ Th}
Mh = {ψ ∈ H1([0, π]) : ψ|T ∈ P1∀T ∈ Th}
Mesh: N × N uniform mesh

Parameters:

ν 10 1.0 10−1 10−2 10−3 10−4 10−5 10−6 0

N 10 15 20 25 30 40

Analytical reference: Taylor-Green Vortex
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Stokes Equations, Postprocessing of Simulations

gridRefinment
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Stokes Equations, Postprocessing

In�uence of grid re�nement on relative error, Taylor-Hood

Xh = {φ ∈ H1([0, π])2 : φ|T ∈ P2∀T ∈ Th},
Mh = {ψ ∈ H1([0, π]) : ψ|T ∈ P1∀T ∈ Th}

10 15 20 25 30 35 40

1e
−

06
1e

−
04

1e
−

02
1e

+
00

1e
+

02 nu =  0.1
nu =  0.01
nu =  0.001
nu =  1e−04
nu =  1e−05
nu =  1e−06

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation �nite element schemes for the incompressible Navier-Stokes equations



Introduction
Stokes Equations

Steady State Navier-Stokes Equations
Incompressible Navier-Stokes Equations
Navier-Stokes equations with relaxation

Outline

1 Introduction

Navier-Stokes

Relaxation Finite Element Schemes for The Incompressible

Navier-Stokes equations.

Implementation and Software.

Methodology

2 Stokes Equations

3 Steady State Navier-Stokes Equations

4 Incompressible Navier-Stokes Equations

5 Navier-Stokes equations with relaxation

Ruslan Krenzler Training Coordinator: Dr. Chiara Simeoni Training. Relaxation �nite element schemes for the incompressible Navier-Stokes equations



Introduction
Stokes Equations

Steady State Navier-Stokes Equations
Incompressible Navier-Stokes Equations
Navier-Stokes equations with relaxation

Steady State Navier-Stokes Equations


u · ∇u − ν∆u +∇p = f (x , t)

divu = 0

u|∂Ω = g(x , t)

Problem: Nonlinear part u · ∇u.
Possible Solution: Iterative method

un · ∇un+1 − ν∆un+1 +∇pn+1 = f (x , t) (Oseen Problem)

Required: not too small ν, small f

Possible reference, exact solution: Taylor-Green Vortex w
w · ∇w − ν∆w +∇p = ∂tw︸︷︷︸

f (x)

|t=c

divw = 0

w |∂Ω = w |∂Ω,t=c
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Steady State Navier-Stokes equations, Simulations

Mixed FEM: Taylor-Hood

Xh = {φ ∈ H1([0, π])2 : φ|T ∈ P2∀T ∈ Th}
Mh = {ψ ∈ H1([0, π]) : ψ|T ∈ P1∀T ∈ Th}
Mesh: N × N uniform mesh

Boundary conditions
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Steady State Navier-Stokes equations.

Figure:

Simulation with k = 20, grid=10x10: ν = 0.1 left, ν = 10−7right,
Xh = P2, Mh = P1
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Incompressible Navier-Stokes Equations


∂tu + u · ∇u − ν∆u +∇p = f (x , t)

divu = 0

u|∂Ω = g(x , t)

Problem: Nonlinear part u · ∇u and time derivative:

Possible Solution: Discretization in time and linearisation

(FreeFem++ convex operator)

∂tu + un · ∇un︸ ︷︷ ︸
1

∆t
(un+1−un◦Xn)

−ν∆un+1 +∇pn+1 = f n+1

Possible reference: Taylor-Green Vortex{
∂tw + w · ∇w − ν∆w +∇p = 0

divw = 0, = 0
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Navier Stokes equations with Relaxation


∂tu + u · ∇u − ν∆u +∇p +ε∂ttu + ε∂t∇p = f (x , t)

divu = 0

u|∂Ω = g(x , t) on ∂Ω× [0,T ]

Problems: Time discretization ε∂ttu + ε∂t∇p
Stabilities and Instabilities caused by ε parameters

Possible solution: FD for time discretization special divergence

preserving FEM spaces e.g. Crouzeix-Raviart

Possible reference: Taylor-Green Vortex
∂tw + w · ∇w − ν∆w +∇p + ε∂ttw + ε∂t∇q = ε∂ttw + ε∂t∇q︸ ︷︷ ︸

f (x ,t)

divw = 0, = 0
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Variational Formulation

0 ≈ 1

∆t
< un+1, φ > +

ε

∆t2
< un+1, φ > +ν < ∇un+1,∇φ >

− < divφ, pn+1 > +
ε

∆t
< divφ, pn+1 >

− 1

∆t
< convect(un,−∆t), φ >

+
ε

∆t2
< −2un + un−1, φ > − ε

∆t
< divφ, pn+1 >

+

ˆ
∂Ω

∂

∂n
un+1φds +

ˆ
∂Ω

(φ · n)pds

+
ε

∆t2

ˆ
∂Ω

∂

∂n
(−2un + un−1)φds − ε

∆t

ˆ
∂Ω

(φ · n)pnds
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