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1. Prelude to the Stage: 

 

The stage is performed at the French National Institute for Research in Computer Science 

and Control (Institut National de Recherche en Informatique et en Automatique-INRIA), 

under the supervision of Mr. Jean-Antoine Désidéri, Director of Research, HDR Head, 

Project-Team Opale (Optimization and Control, Numerical Algorithms and Integration of 

Complex Multi-Discipline Systems governed by Partial Differential Equations).  

 

The stage lasted for almost three months starting in May, 2009 until July, 2009. During the 

tenure at INRIA, the intern mainly worked in the field of numerical approximation of the 

optimization problem using the freeware software Scilab.   

 

2. Literature Overview 

 

First a brief overview of the literature is presented.   

2.1 Historical Use of Optimization in Aerospace 
 

Optimization is the choice of best element from a set of alternatives available to maximize 

or minimize a real function. The history of optimization dates back to the first known 

optimization technique of Steepest Descent pioneered by Gauss. With the advent of last 

century the available techniques are more refined and now find themselves being employed 

in a multitude of scientific and technological fields. 

 

Aviation, from the beginning is enjoying the benefits of optimization techniques. Early 

aerospace designs were characterized not only by a great deal of trial and error but also 

with a considerable amount of analysis. It is also clear the early pioneers had clear goals 

they wished to meet. Although, these were simply measures of distances covered. As the 

technologies used in aerospace applications have developed, the goals have become vastly 

more sophisticated.  

2.2 Multiple-objective Optimization 
 

Multiple-Objective optimization problems refer to the optimization problem in 

simultaneously two or more conflicting/contradicting objectives are tried to be minimized 

which may be constrained under certain conditions. [1]  
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Most realistic optimization problems, particularly those in design, require the simultaneous 

optimization of more than one objective function. Some examples: 

• In bridge construction, a good design is characterized by low total mass and high 

stiffness. 

• Aircraft design requires simultaneous optimization of fuel efficiency, payload, and 

weight. 

• In chemical plant design, or in design of a groundwater remediation facility, 

objectives to be considered include total investment and net operating costs. 

• A good sunroof design in a car could aim to minimize the noise the driver hears and 

maximize the ventilation. 

• The traditional portfolio optimization problem attempts to simultaneously minimize 

the risk and maximize the fiscal return. 

 

Generally there is not a single solution to multi-objective optimization problems that 

simultaneously optimizes all the criteria to its best. In each case, we look for a trade-off 

that all the criteria are sufficiently optimized and if further trying to improve on one criterion 

the other(s) will suffer.   

 

Multi-objective optimization has its root in late nineteenth century welfare economics, in the 

works of Edgeworth and Pareto. A mathematical description is as follows: 

 

minx ϵ C �	
� = 
�
��
� ��	
���	
�⋮����	
���	
� ��

��
�
 

Where n≥ 2 and 

 � = �
 ∶ ℎ	
� =  0; �	
� ≤ 0, " ≤ 
 ≤ #$ 
 

Denotes the feasible set constrained by equality and inequality constraints and explicit 

variable bounds.  The space in which the objective vector belongs is called the “objective 

space” and the image of the feasible set under F is called the “attained set”. 

 

Multi-objective optimization can be further classified depending upon the type of objectives 

involved. A brief overview is given here: 

• Multi-criterion Optimization 
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• Multi-point Optimization 

• Multi-discipline Optimization 

 

In our problem, we will deal with multi-discipline optimization problem which will consider 

the objectives to be based on aerodynamics and structures mainly.  

 

2.2.1 Multi-Disciplinary Optimization 

 

Multi-disciplinary optimization (MDO) is a field of engineering that uses optimization 

methods to solve design problems incorporating a number of disciplines. MDO allows 

designers to incorporate all relevant disciplines simultaneously. The optimum of the 

simultaneous problem is superior to the design found by optimizing each discipline 

sequentially, since it can exploit the interactions between the disciplines. However, including 

all disciplines simultaneously significantly increases the complexity of the problem. 

 

These techniques have been used in a number of fields, including automobile design, naval 

architecture, electronics, computers and electricity distribution. But, the greatest number of 

applications has been in the field of Aerospace engineering. For example, the proposed 

Boeing blended wing body (BWB) aircraft concept has used MDO extensively in the 

conceptual and preliminary design stages. These disciplines range from aerodynamics, 

structural analysis, propulsion, control systems etc.  

 

An important task in multi-objective optimization is to find the Pareto-optimal solutions. The 

scalar concept of “optimality” does not apply directly in the multi-objective setting. Pareto 

optimality serves as a useful representation. Their knowledge allows a decision maker to 

learn more about the trade-offs among the different objectives.  

2.3 Pareto Optimality 
 

It is an important concept in economics with broad applications in other fields as 

engineering, game theory and social sciences. Named after Vilfredo Pareto, an Italian 

economist, Pareto optimality is a measure of efficiency. An outcome of a game is Pareto 

optimal if there is no other outcome that makes every player at least as well off and at least 

one player strictly better off. That is, a Pareto Optimal solution cannot be further improved 

without hurting at least one player.  
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A typical definition of Pareto efficiency would be: “A given arrangement is Pareto efficient if 

there can be no arrangement where change to make one player/person better off will not 

leave other’s position worsened.” Mathematically, we can give the following definition: 

 

“A vector of decision variables 
∗ & � is Pareto optimal if there does not exist another 
 & � such that �'	
�  ≤  �'	
∗� for all i = 1,…, n and �(	
� <  �(	
∗� for at least one j.” 
 

This concept almost always does not give a single solution, but rather a set of solutions 

called the “Pareto Optimal Set”. The vectors x* corresponding to the solutions included in 

the Pareto Optimal set are called “non-dominated”.  

 

2.3.1 Notion of Dominance/Non-dominance 

  

Let Y Є ℝ N denotes the vector of design variables. If several minimization problems are to 

be considered concurrently, a design point Y1 is said to dominate the design point Y2, 

symbolically,  +� ≻  +� 
 

iff, for all the criteria to be minimized J = JA, JB, … 

 -	+��  ≤ -	+�� 
 

and at least one of the inequalities is strict.  

 

Otherwise, the vectors are said to be non-dominated, that is what we need for Pareto 

Optimal set, i.e. +� ≻  +�, +� ≻  +�   
 

2.3.2 Pareto Front 

 

The plot of the objective functions whose non-dominated vectors are in the Pareto optimal 

set is called the “Pareto Front” [3]. A Pareto front is the set of choices that are Pareto 

efficient. The Pareto front is particularly useful in engineering; it’s a convenient way of 

considering only Pareto efficient alternatives, rather than considering the full range of every 

parameter. 
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Figure  2-1: Pareto front [3] 

2.4 Problem Scenario 
 

We are looking for a multi-objective optimization problem related to aeronautics; here we 

are concerned with multi-disciplinary optimization with aerodynamic design versus 

structural design and possibly acoustics, thermal loads etc. We tend to develop a numerical 

algorithm of a three objective unconstrained minimization problem. The problem under 

consideration falls into the category of multi-disciplinary optimization problem. 

 

We consider an optimization problem with three objective functions denoted by J1, J2 and J3. 

Each criterion is considered to be a smooth function of a common design vector Y Є ℝ4. We 

aim to find Y* such that it is the Pareto optimal solution of all the criteria.  

 

2.4.1 Problem Statement 

 

Given a design vector;  + Є ℝ/  
Minimize the given criteria denoted by; -'	+�      0 = 1, 2, … , 4 
Where  5 ≥ 4 
Here, we consier N = 4 and n = 3. 

The gradients of the criteria are denoted by; 7' =  ∇-'	+� 
 

Before we continue with the description of our solution and the numerical approach used in 

order to optimize our given objectives, it is important to briefly discuss some concepts.  
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Most significantly the number of criterion ‘n’ considered should be less than the dimension 

‘N’ of the space of design vector. The space of design vector can be a Hilbert Space usually 

equal to ℝ/, but it can also be a subspace of L2.  
 

2.4.2 Pareto Concepts 

 

Here, we will briefly state the important theorems and lemmas and will not go into the 

details and the proofs of any of them. These concepts are taken from the report by Mr. 

Jeane-Antoine Désidéri and the reports are listed in the reference section [2]. For proofs and 

details, these reports maybe consulted. For a further detailed study of the concepts 

presented here, we refer a text book by K. Miettinen in non-linear multi-objective 

optimization.  

 

We consider n smooth criteria Ji(Y), where Y is the design vector; Y Є HHHH;    HHHH    : working space, 

a Hilbert space equal to ℝ/, but it can also be a subspace of L2. The functions or functional 
are assumed to be of class C2 in some working open ball of the design space HHHH.  

 

Lemma 1 

 

[2] Let +9 be a Pareto optimal point of the smooth criteria -'	+� 	1 ≤  0 ≤  4 ≤  5�, and define 
the gradient vectors 7'9 =  ∇-'	+9� in which ∇ denotes the gradient operator. There exists a 
convex combination of the gradient vectors that is equal to zero: [2] 

 

: ;'7'9 = 0,       ;'  ≥ 0,        �
'<� : ;'

�
'<� = 1 

 

Definition 1: Pareto Stationary 

 

[2] The smooth criteria -'	+� 	1 ≤  0 ≤  4 ≤  5� are said to be Pareto stationary at the design 
point +9 iff there exists a convex combination of the gradient vectors, 7'9 =  ∇-'	+9�, that is 
equal to zero: 

 

: ;'7'9 = 0,       ;'  ≥ 0,        �
'<� : ;'

�
'<� = 1 
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Thus in general, for smooth unconstrained criteria, Pareto stationarity is a necessary 

condition for Pareto optimality.  

 

Inversely, if the smooth criteria -'	+� 	1 ≤  0 ≤  4 ≤  5� are not Pareto stationary at a given 
design point +9, descent directions common to all criteria exist. Next, we will devise a 

method to determine this descent direction.  

 

Lemma 2 

 

[2] Let HHHH be a Hilbert space of infinite or finite dimension N, and �7'$ 	1 ≤  0 ≤  4 ≤  5� a family 

of n vectors in HHHH. Let UUUU be the set of strict convex combinations of these vectors: 

 

= =  >? & ℋ ? =  : ;'7'  ;  ;' > 0 ;  : ;' = 1 �
'<�  �

'<�B C 
 

and = its closure (the convex hull of the family). Then, there exists a unique element ? & = 

of minimum norm, and:  

∀ 7 & = ∶ 	7, ?� ≥ 	?, ?� =  E?E� ∶=  �F 
 

Combining Lemma 2 with Definition 1 yields the following: 

 

Theorem 1 

 

Let HHHH be a Hilbert space of infinite or finite dimension N. Let -'	+� 	1 ≤  0 ≤  4 ≤  5� be n 
smooth functions of the vector Y Є HHHH, and Y0 a particular admissible design point, at which 

the gradient vectors are denoted by 7'9 =  ∇-'	+9�, and [2] 
 

= =  >? & ℋ ? =  : ;'7'  ;  ;' > 0 ;  : ;' = 1 �
'<�  �

'<�B C 
 

Let ω be the minimal norm element of the convex hull =, closure of U. Then: 

1. Either ω = 0, and the criteria -'	+� 	1 ≤  0 ≤  4 ≤  5� are Pareto stationary at Y = Y0 [2]. 

2. Or ω ≠ 0 and – ω is a descent direction common to all the criteria; additionally, if 

ωЄU, the inner product 	7, ?� is equal to E?E� for all 7 & = [2]. 
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As a result to the above described theorem, one is led to identify the vector 

 

? =  : ;'7'9 �
'<�  

by solving the following quadratic form constrained minimization problem in ℝ/: 
 

minG H ℝI J: ;'7'9 �
'<� J�

 

 

subject to following constraints: 

 

;' ≥ 0 	∀0� ;  : ;' = 1 �
'<�  

 

Note that in a finite dimensional setting, and in a functional space setting as well, the above 

problem can be solved in ℝ�, so long as the gradients �7'$ 	1 ≤  0 ≤  4 ≤  5� and their inner 
products K7'(9 ≔ 	7'9, 7(9�M are known.  

 

Next we will discuss the possible routines to solve the above given minimization problem. 

There are a few library routines available with Scilab for optimization namely Optim and 

Quapro. In order to solve the minimization problem, these routines were tried but neither 

one of them was able to solve the problem. In the following sections we will discuss the 

issues that led to the inability of the library routines provided with Scilab to be implemented 

for our case.  

 

2.4.3 Scilab Routine:Optim 

 

[4], [5] Optim is a utility to solve non-linear optimization problem in Scilab. The simplest call 

to function optim is given as 

 

[fopt, xopt] = optim(costf,x0) 

 

Where xopt is the value of the design variables vector x that minimizes function costf. The 

value of the function at x = xopt is given by fopt. An initial guess to the solution, x0, is 
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provided as argument of the function. The function costf must be defined so that the 

general call to this function  

 

[f,g,ind] = costf(x,ind) 

 

This function is able to return the value of function f and its gradient g depending upon the 

value of ind given to it.  

 

The biggest advantage of this routine is that it can be used for any non-linear function. In 

addition, optim can use a third argument specifying the algorithm used for the solution that 

can be Quasi-Newton method, Conjugate Gradient method and Non-differentiable method. 

Function optim allows for constraints to be places on the design variables in the form of a 

lower bound and an upper bound. These bounds can be represented in the form of arrays 

where the values each individual component of our design variable can attain must be 

specified. [6] 

 

In our problem, we are not usually restricted to any kind of algorithm so that option of 

optim was left alone but we had constraints on our variable in the form of 

 

;' ≥ 0 	∀0� ;  : ;' = 1 �
'<�  

 

Here, we notice that we only had specific lower bounds but the upper bound is not individual 

so we cannot simply use an upper bound as the upper bound is in form of a sum of all the 

components of the design variable.  

 

This limitation of optim was crucial in our minimization problem and we have to look for 

another library routine.  

 

2.4.4 Scilab Routine: Quapro/Qpsolve (Quadratic Programming) 

 

[4] Quadratic programming is an optimization method applied to the solution of problems in 

which both the objective function is defined, in general, by an objective function consisting 

of a quadratic form plus a linear combination of the design variables. The constraint 
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functions of the problem are still linear functions of the design variables. The problem may 

be expressed as  

N040N0OP �	
� = 1 2Q 
RS
 + UR
 
 

Subject to  V
 = # W
 ≤ ℎ 
And 
X  ≤ 
 ≤  
Y 
 

Where x is the design vector with n variables, Q is an n X n symmetric square matrix, c is a 

column vector of n constant coefficients, and A, b, G and h can have different dimensions 

depending upon the number of equality and inequality constraints. xL and xU are the vectors 

representing lower and upper bounds respectively with n variables.  

 

Scilab has a built-in function for solving quadratic programming problems; the function is 

given by quapro. This function is superseded by another built-in function qpsolve in the 

recent versions of Scilab. This function can be called using the following syntax: 

 

[x [,iact [,iter [,f]]]]=qpsolve(Q,p,C,b,ci,cs,me) 
 

Q  real positive definite symmetric matrix (dimension n x n).  

p  real (column) vector (dimension n)  

C  real matrix (dimension (me + md) x n). This matrix may be dense or sparse.  

b  RHS column vector (dimension m=(me + md))  

ci  column vector of lower-bounds (dimension n).  

cs   column vector of upper-bounds. (Same remarks as above).  

me  number of equality constraints (i.e. C(1:me,:)*x = b(1:me))  

x  optimal solution found.  

 
The condition on Q being definite positive matrix makes it useless for our problem, as we 

cannot guarantee the positive definitivity of Q since it is a combination of a number of 

gradients and can be negative in some cases.  

 

There are some libraries written in C++ and in some other languages that can be used with 

Scilab such as OPT++ [8], but the difficulty and lack of expertise to incorporate libraries 
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written in other programming languages and the inability to use any of the built-in libraries 

of Scilab drives us to write our own algorithm in Scilab for the multiple gradient descent 

direction.  

 

2.4.5 Algorithm 

 

After trying out different library functions from Scilab and not succeeding because of 

limitations that are already being defined in the previous sections. It was decided that an 

algorithm will be devised and written in Scilab for the minimizing of our problem which will 

give us the descent direction common to all the criteria. The minimization problem is the 

following, given: 

? =  : ;'7'9 �
'<�  

 

Minimize the quadratic form 

minG H ℝI J: ;'7'9 �
'<� J�

 

 

subject to following constraints: 

;' ≥ 0 	∀0� ;  : ;' = 1 �
'<�  

 

We start with an initial guess on ;9 = Z�� , �� , … , ��[ 
 

In our case, we assume n = 3 and N = 4, so that ;9 = Z�\ , �\ , �\[. We define our criteria J1, J2 

and J3 and their respective derivatives as: 

 -'	+9� 	1 ≤  0 ≤  4 ≤  5� 7'9 =  ∇-'	+9� 
 

where Y0 is an initial point that can be determined by design of experiment. We will briefly 

look into this notation of Design of experiment before moving further.  
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Design of Experiment 

 

Design of experiments, or experimental design, is the design of all information-gathering 

exercises where variation is present, whether under the full control of the experimenter or 

not. The purpose of it is to study the effect of some processes or intervention on some 

objects. Design of experiment is a discipline which has broad applications across all the 

natural and social sciences.  

 

A methodology for designing experiments was proposed by Ronald A. Fisher, in his 

innovative book The Design of Experiments (1935). A detailed study of the topic is out of scope 

of this report.  

 

After selecting one of the vectors from the set resulting from the design of experiments, the 

emphasis is on finding the minimum norm ω. There can be two conditions: 

1. ω = 0 at which we say that it is already a Pareto stationary at Y = Y0 and we stop [2]. 

In programming this condition can be satisfied by using an appropriate value of 

tolerance and 

 E?E < ]^_              `]^a 
 

2. The second case can be when ω ≠ 0 and – ω is the descent direction [2]. In this case, 

if  E?E > ]^_              
 

We will follow the following algorithm. 

 

Once, we find our initial ω ≠ 0, we redefine ω as 

 

? =  : ;'7'9 ���
'<�  

And define the minimization of  

b = minG H ℝIcdE?E� = minG H ℝIcd J: ;'7'9 ���
'<� J�
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And the constraints are modified in order to account for the nth α, i.e. αn. The constraints take 

the following new form: 

  
;' ≥ 0 	∀0� ;  ;� = 1 − : ;'

���
'<�  

 

Next, we define the partial derivatives of our newly defined q with respect to αi, this can be 

represented as: fbf;' = 2	?, 7'9 −  7�9�        ∀ 0 = 1,2, … 4 − 1 
 

In the above equation 7'9 −  7�9 is used to incorporate the effect of αn. Once, the evaluation of 

partial derivatives of q is done, we use the following expression:  

 

;'g =  ;'9 −  h i fbf;'jGkl
              ∀ 0 = 1,2, … 4 − 1 

 

And set ;'g = 0 or ;'g = 1, depending upon the condition that is if: fbf;'  ≥ 0 
⇒  h'  ≤  ;'9 fbf;'n  

And if fbf;' < 0 
⇒  h'  ≤  1 − ;'9 o fbf;'on  

 

So, depending upon the value of 
pqpGk, we have the following condition on h and we choose 

the maximum value of h as: 

h',rst: =  
vww
x
wwy

;'9 fbf;'n                  fbf;' > 0    
1 − ;'9 o fbf;'on          fbf;' < 0 z 
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Now, for αn we make use of the condition that we defined earlier  

;� = 1 − : ;'
���
'<�  

: ;'g
���
'<� = : ;'9

���
'<� −  h : fbf;'

���
'<�  

1 −  ;�g = 1 −  ;�9 −  hSg ,         Sg ≔   : fbf;'
���
'<�  

;�g = ;�9 +  hSg 
 

Again we have similar conditions on ρ as before; 

 

h�,rst: =  
vw
x
wy1 − ;�9 SgB                  Sg > 0    

;�9 |Sg|B                      Sg < 0 z 
 

Combined, these two gives us a condition on the choice of ρ. We will now consider the 

minimum of ρ in the set. hrst = min'<�,…,� h',rst 
 

We then discretize this ρmax into a number of intervals using the equations given as: 

 

h| =  hrst}                  } = 1, … , N 

 

Where m is some positive integer and its choice depends upon the conditions. 

 

;'g =  ;'9 −  h| i fbf;'jGkl
              ∀ 0 = 1,2, … 4 − 1 

;�g = ;�9 + h|Sg              ∀ 0 = 4 
 

Now, this new α takes place of α0 and we again calculate ω for every ρk until it reaches ρmax 

or the value of ω starts to increase. Here, it should be kept in mind that we are looking that 

none of the criteria should increase, so as soon as one of them increases we stop. At this 
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point, we again repeat the steps and continue until the convergence in the value of ω is 

achieved.  

 

At this step, we get out of the loop for calculation of ω and compute an interval using the 

following equations: 

∆]',rst = -'7' . ? 

Then, we take the maximum of these values and discretize the interval [0, tmax] into a 

number of steps.  

 ]rst = max'<�,..,� ∆]',rst 
 

Then, reset the initial vector of design variables to  

 +9 = +9 − ]? 

 

And then calculate  

 �'	]� =  -'	+9 − ]?�  	1 ≤ 0 ≤ 4� 
 

The step size should be such that it is the largest strictly positive real number for which all 

the functions �'	]� =  -'	+9 − ]?�  	1 ≤ 0 ≤ 4� are monotone-decreasing over the interval 

[0,tmax]. We stop when any of the functions start increasing.  

 

At this, we have a new design point +9 = +9 − ]? and we again start with the initial steps 

with this new Y0 and continue doing until we satisfy the tolerance condition on ω. We 

continue the procedure until we find the value of ω less than tolerance. 

  E?E < ]^_              `]^a 
 

If the above condition is satisfied, that means that we have found one point on our Pareto 

front and this point is a part of Pareto optimal set.  

 

We continue this procedure for all the points from our set of design of experiments.  
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Now, we will present the example that we used for our problem and show the results from 

the run of our code on it.  

 

2.4.6 Example and Solution 

 

We used three criteria J1, J2 and J3 as our examples [8] and have defined them as follows: 

 

-�	�� = 2 ��2 + √2���� + √2�\� + ���� 
-�	�� =  3 � 53��� +  32��� + 2�\� + 2���� 

-\	�� =  1��� + 2��� + 2�\� + 14���  
 

The set of design variables was chosen to be comprised of 11 points and as follows: 

+ =  ��0.90.90.90.9� , �1111� , �1.11.11.11.1� , �1.21.21.21.2� , �1.31.31.31.3� , �1.41.41.41.4� , �1.61.61.61.6� , �1.71.71.71.7� , �1.81.81.81.8� , �1.91.91.91.9� , �2.02.02.02.0�� 
 

The results are shown in the Appendix; here we represent the results using the graphs 

 

Figure  2-2: Pareto Front for J1 vs. J2 
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Figure  2-3: Pareto front for J1 vs. J3 

 

Figure  2-4: Pareto front for J2 vs. J3 

 

Figure  2-5: Trend for J2 vs. J3 as the iterations 
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Figure  2-6: Trend of decrease in the value of ω 
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A.1 Appendix: Results for initial and final iteration 

 

 

initial 

   Y j1 j2 j3  w  

     0.9 9.442052 26.54321 6.481481 8.258974 

1 11.65685 21.5 5.25 6.020793 

1.1 14.10479 17.7686 4.338843 4.523512 

1.2 16.78587 14.93056 3.645833 3.484256 

1.3 19.70008 12.72189 3.106509 2.740463 

1.4 22.84743 10.96939 2.678571 2.194167 

1.6 29.84155 8.398438 2.050781 20.14365 

1.7 33.68831 7.439446 1.816609 22.29636 

1.8 37.76821 6.635802 1.62037 24.35648 

1.9 42.08124 5.955679 1.454294 26.33168 

2 46.62742 5.375 1.3125 28.23428 
Table 1: Initial Values of the criteria J1, J2 and J3 and the combination of derivatives ω 

 

 final 

   Y j1 j2 j3  w  

 

    0.9 32.73655 8.294122 1.562837 0.906045 

1 33.25493 8.20128 1.548888 0.894161 

1.1 32.3329 8.233263 1.603136 0.945527 

1.2 31.38221 7.985843 1.595362 0.944998 

1.3 32.34522 7.881773 1.641581 0.993237 

1.4 33.62845 7.48323 1.603102 0.96563 

1.6 29.00605 7.39153 1.333886 0.918005 

1.7 30.07409 7.913961 1.460697 0.88562 

1.8 29.05121 8.738566 1.440301 0.905873 

1.9 14.92747 12.59104 2.556135 0.813994 

2 29.67797 7.391229 1.356703 0.892021 
Table 2: Final Values of the criteria J1, J2 and J3 and the combination of derivatives ω 

 

 

 

 

 

 



 

Multi-Objective Optimization, Concurrent Engineering  - 21 -  April 2009  

Haris Malik 

 

A.2 Appendix: Scilab Code  

clear close	� clc  //Design vector x = 2.0*ones	4,:�;//rand	4,:�; x0 = x;  // Definition of Criteria J1, J2 and J3 function y=J1	x�   y=[2*	2*x	1�^2+sqrt	2�*x	1�^2+sqrt	2�*x	3�^2+x	4�^2�];//[x	1�^2+ 2*x	1�*x	2� + x	2�*x	3� - x	4�^2]; endfunction  function y=J2	x�   y=[3*	1/x	1�^2+1.5/x	2�^2+2/	3*x	1�^2�+2/x	3�^2+2/x	4�^2�];//[x	2�^2+ 2*x	1�*x	2� + 2*x	2�*x	3� + x	3�^2']; endfunction  function y=J3	x�   y=[1*	1/	4*x	4�^2�+2/x	3�^2+	1/x	1�^2+2/x	2�^2��];//[x	3�^2 - x	1�*x	2� + x	2�*x	3� - x	2�^2]; endfunction   //Function defined to calculate partial derivatives function parq=partialq	a0,u�   for i = 1 : l      parq	i�=0;     for j = 1 : l       if j==i         parq	i� = parq	i� + 2*a0	i�*sum		u	:,i�-u	:,3��.*u	:,j��;       else         parq	i� = parq	i� + 2*a0	j�*sum		u	:,i�-u	:,3��.*u	:,j��;       end     end   end 
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endfunction  //Function defined to find minimum rho function rhomin=rho	a0,parq�   for i = 1:l   if 	parq	i�>0�     r	i� = a0	i�/parq	i�;   else     r	i� = 	a0	i� - 1�/parq	i�;   end end  r;  Q = sum	parq�; an = 1 - sum	a0�; if	Q>0�   r	l+1� = 	1 - an�/Q; else   r	l+1� = an/Q; end  rhomin = min	r� endfunction   //Function to calculate the omega of minimum norm function [W0,W1,Wmin,anew,a0] = omegamin	ak_new,rhomin,parq�    //Defining Initial J1 for i = 1:l+1   W1	:,i� = u	:,i�*1;//ak_new	i�; end W1 //Defining flags which will be used to break from the loop if any conditions are violated Wmin = W1; anew = ak_new; 
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flag1 = 0; flag2 = 0; flag3 = 0;   while 	j <= k�   //Putting the initial value in old    ak_old = ak_new;   j = j+1;   rhok = j*rhomin/k;   //calculating new value   for i = 1 : 2     ak_new	i� = a0	i� - rhok*parq	i�;     ak_new	l+1� = an + rhok*Q;      if	ak_new	i�<0�       'i', i       //halt	�       flag1 = 1;       break     end   end   if 	sum	ak_new�>1�     'sum	ak_new�',sum	ak_new�;     ak_new;     ak_old;     //halt	�     flag2 = 1;     break   end   if	flag1 == 1�     ak_new	i� = ak_old	i�;     //halt	�     flag1 = 0;     //break   end   W0 = W1;   for i = 1:3     W1	:,i� = u	:,i�*ak_new	i�;     if 	norm	W1	:,i��>=norm	W0	:,i��� 
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      'i', ' The violating index', i;       flag3 = 1;       //halt	�       //break     end   end      if	flag3 == 1�     'The Minimum W'     Wmin = W0;     'The corresponding alpha'     anew = ak_old';     a0 = ak_old	1:l�;     break   else     'The Minimum W'     Wmin = W1;     'The corresponding alpha'     anew = ak_new';     a0 = ak_new	1:l�;   end    end endfunction  function [j1n,j2n,j3n,x1] = criteria	u1,u2,u3,j1,j2,j3,sumW� endfunction  //initialising everything nsw = 10 tol = 1.0 it_w = 0  //Opening files to write the results f1 = file	'open','parq.txt','unknown'� f2a = file	'open','u1s.txt','unknown'� f2b = file	'open','u2s.txt','unknown'� 
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f2c = file	'open','u3s.txt','unknown'� f3 = file	'open','js.txt','unknown'� f4 = file	'open','ws.txt','unknown'�  //Main loop for minimum omega that should be either 0 or less than tolerance while	nsw>tol & it_w<100�   it_w = it_w + 1; //igrad = input	"Do you want Gradient? Press 1 for yes, 0 for no."�  //Calculating the value of criteria at some point j1 = J1	x�; j2 = J2	x�; j3 = J3	x�;  //writing the value of criteria to the file fprintf	f3,'%6.8f %6.8f %6.8f',j1,j2,j3�   //Calculating derivatives at the same point [u1]=derivative	J1,x�;//,H_form='blockmat'�; [u2]=derivative	J2,x�;//,H_form='blockmat'�; [u3]=derivative	J3,x�;//,H_form='blockmat'�;  //Writing all the values of the derivatives to the files fprintf	f2a,'%6.6f %6.6f %6.6f %6.6f',u1� fprintf	f2b,'%6.6f %6.6f %6.6f %6.6f',u2� fprintf	f2c,'%6.6f %6.6f %6.6f %6.6f',u3�  //It is an option to view the value of criteria and its gradient //if 	igrad==1� //  'The Criteria functions are' //  'j1', j1 //  'j2', j2 //  'j3', j3 //  halt	� //  'The Gradients are' //  'u1' , u1 
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//  'u2' , u2 //  'u3' , u3 //  halt	� //end // //if	igrad==0� //'The Criteria functions are' //  'j1', j1 //  'j2', j2 //  'j3', j3 //  halt	�   //end   //Making a matrix just for convenient use further in the program u = [u1' u2' u3'];  //The number of criteria concerned will reflect with the number of a's a = [1/3;1/3;1/3]; a0 = a	1:2�;  //Defining cost function both with a =1 to n-1 and also with a = 1 to n   deff	'f=cost	a�','f=	norm		a	1��*u1+	a	2��*u2��^2'�;       q = cost	a0�;    l = length	a0�;  temp =0 eps = 0.000001 normW = 1 itr=0 //   while	norm	normW-temp�>eps & itr<1000�     //'The Partial Derivatives are'     //'---------------------------' 
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    //Defining partial derivatives of cost function q wrt all a's from i = 1 to n      //Printing partial derivatives and then finding rho for both a' = 0 or 1 with rho1 for a'=1 and rho2 for 0      parq = partialq	a0,u�;          //Taking the sum of partial derivatives of q from 1 to n-1 to calculate alpha n     Q = sum	parq�;     an = 1 - sum	a0�;          //procedure called to find minimum rho among indvidual maximum     rhomin = rho	a0,parq�;     k = 5;     ak_new = a0/k;     ak_old = a0;     j = 0;      //procedure called to find omega in each step     [W0,W1,W,a,a0]=omegamin	ak_new,rhomin,parq�;     W;     temp = normW;     normW = norm	W�;     itr=itr+1;     //loop defined for evaluating a 	new ones� and also calculating    end      flag4 = 0;   sumW = W	:,1�+W	:,2�+W	:,3�   if 	sumW == 0�     'Pareto Optimality'   else     //finding t max       t1max = 	j1/sum	u1'.*sumW��;     t2max = 	j2/sum	u2'.*sumW��;     t3max = 	j3/sum	u3'.*sumW��;     j1o = j1;     j2o = j2;     j3o = j3; 
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     t = max	t1max,t2max,t3max�;      itr = 0      //discretizing tmax and finding new values of criteria     for itr = 0:10       h=itr*t/10;       x1 = x-h*sumW;       j1n = J1	x1�;       j2n = J2	x1�;       j3n = J3	x1�;       if 	j1n>j1o�         'condition break'         flag4=1;         break;       end       if 	j2n>j2o�         'condition break'         flag4=1;         break;       end       if 	j3n>j3o�         'condition break'         flag4=1;         break;       end        j1o = j1n;       j2o = j2n;       j3o = j3n;     end     if 	flag4 == 1�       j1n = j1o;       j2n = j2o;       j3n = j3o;     end     if 	flag4 == 0�       j1n; 
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      j2n;       j3n;     end   end   x = x1;   d1 = j1 - j1n;   d2 = j2 - j2n;   d3 = j3 - j3n;   nsw = norm	sumW�   fprintf	f4,'%6.8f',nsw� end   file	'close',f1� file	'close',f2a� file	'close',f2b� file	'close',f2c� file	'close',f3� file	'close',f4�                  
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