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*Preluc

d Internship Period
e Internship lasted from the first week of May until mid July, 2009
e Under the supervision of Mr. Désidéri

O Objective
e The nroiect T was involved in was related to the ulti-ohiective
I 11\ I.J J 11V \UIV WA i LA RS =) I \oiIUdLC A w\v i I\ 1 1410l UUJ\.;U
optimization with the objective functions related to aeronautics

e The main task was to develop an algorithm in Scilab which can be
used to find Pareto Optimal set and plot Pareto front

0 Abstract

e In aeronautics, performance of an aircraft depends upon several
factors such as, lift, drag, moments. Also important is the structural
integrity of the aircraft. But, often optimizing one of the criteria has
adverse effects on the other

e To cater this issue, simultaneous optimization of all the important
factors need to be carried out
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“Optimization

O Optimization in aerospace
From the beginning, engineers in this field are eager to employ the

optimization methods so as to save that extra inch

O Multi-objective Optimization

Multi-objective optimization has its root in late nineteenth century

welfare economics, in the works of Edgeworth and Pareto

Simply when there are two or more objective functions to be

minimized

Often these functions are contradicting in behavior
Some examples can be found in following sectors

— Bridge construction, Aircraft design, Chemical Plant design etc.

Mathematically

wheren = 2

filx)
min f (—1'}
c F(x) = :
h fn—l‘zx}
£ (x)

C={x:h(x)'=10; glx) = 0,8 <x & b}
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“Multi-Objective Optimization

O Multi-objective optimization can be further classified
depending upon the type of objectives involved:

e Multi-criterion Optimization
e Multi-point Optimization
e Multi-discipline Optimization

d In our problem, we deal with multi-discipline optimization
problem

O Multi-Disciplinary Optimization
e Optimization problem consists of objective functions from a variety of
disciplines
e Presence in a number of fields, including automobile design, naval
architecture, electronics, computers and electricity distribution
e Example: Boeing blended wing body (BWB) aircraft
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O Pareto Optimality

Important in
representation

Multi-objective

optimization

and

a

Named after Vilfredo Pareto, it's a measure of efficiency

Pareto Optimal solution is the one that cannot be further improved
without hurting at least one player

Such design vector x™ is called Pareto optimal

The vectors x* corresponding to the solutions included in the Pareto
Optimal set are called "“non-dominated”

d Dominance/Non-dominance
Y1 is said to dominate the design point Y2

¥l = y2

Iff, for all J = J,, Jg, ...

J¥t) =J(¥?)
and at least one of the inequalities is strict
Otherwise, the vectors are said to be non-dominated

Fle ¥i¥2= ¥?

convenient

M. Haris
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O Pareto Front

e The plot of the objective functions whose non-dominated vectors are
in the Pareto optimal set is called the “Pareto Front”

e Useful in engineering
e Convenient way of considering only Pareto efficient alternatives

Ja

Figure 1: Pareto front
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**Problem

O Multi-objective optimization with 3 objective functions
e J,,),and ),

e Most probably related to aerodynamic design, structural, thermal and
acoustics etc

e Each criterion is considered to be a smooth function of a common
design vector Y € R4

d Problem Statement
e Design vector
¥ERY
e Minimize the given criteria
) i=12..n
e Where N=n

e We consider N=4 and n=3
e The space of design vector can be a Hilbert Space usually equal to RN,
but it can also be a subspace of L2
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‘*Pareto Concepts

0 Some important concepts

e Y € 4, #: working space, a Hilbert space equal to RN, can also be a
subspace of L2

e The objective functions are assumed to be class C2 in some working
open ball of the design space #

0 Lemma l
e Let be a Pareto optimal point of the smooth criteria l:(¥)(1 =i = n = N)

and define the gradient vectors v = Vi(¥®) in which denotes the
gradient operator. There exists a convex combination of the gradient
vectors that is equal to zero:

n

Zaiu?zﬂ, a; =0, Z:I,-zl

i=1 i=1
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O Pareto Stationary

The smooth criteria J,(Y) are said to be Pareto stationary if they
satisfy lemma 1, i.e.

n

n
ZIIEHF=D_. a; = 0, Zn‘i=1

[=1 i=1

For smooth unconstrained criteria, Pareto stationarity is a necessary
condition for Pareto optimality

If the smooth criteria J;(Y) are not Pareto stationary at a given design
point then descent directions common to all criteria exist

M. Haris
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0 Lemma 2
e Let grbe a Hilbert space of finite or infinite dimension N, and

{u;3{1 = i = n = N)a family of n vectors in #. Let ¥ be the set of strict
convex combinations of these vectors

o T
'u=IWEH/(W=TII._'H._':R'LZ}D:?EE,_'=11
L ! = = )

e and its closure (the convex hull of the family). Then, there exists a
unique element of minimum norm, and:

viel: (Ha) = (ww = lul®:=C,
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O Theorem 1

e Let H be a Hilbert space of infinite or finite dimension N. Let

J(¥3(1 =i =n = N) be n smooth functions of the vector Y € H, and Y°
a particular admissible design point, at which the gradient vectors are
denoted by u! = ¥/.(¥%) and,

u=fucsefomYamiaz0;Ya=1]

e Let w be the minimal norm element of the convex hull 7, closure of
U. Then:

— Either w =0, and the criteria are Pareto stationary at Y = Y°

— Orw#0and—wis adescent direction common to all the criteria;
additionally, if w€U, the inner product (u,w) is equal to ||w||?

forallmeu
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Q Hence,

We identify the following vector

mn
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With following constraints

T

H[ED{?E}FZH’[ZI

[mi
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+Scilab Routines

Q Optim

Solve non-linear optimization problem
Can define the prefered algorithm to solve the problem

But, allows constraints in the form of lower and upper bounds on
design variable only

Can only define lower bound not the upper bound

a Quapro/stoIve

Older version of Scilab has quapro, now replaced by gpsolve in recent
versions

Used for objective function consisting of a quadratic form plus a linear
combination of the design variables

Constraint functions can be defined in addition to bounds on design
variable

The constraints functions should be linear

But the matrix describing the quadratic part of objective function
should be only positive definite symmetric matrix

We cannot guarantee the positive definitivity

M. Haris
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“*Algorithm

d Minimization problem

e Minimize

e Subject to constraints B,

E[ED{VE}:ZE‘[=1
=1

Q Initial step

e Choose a design vector Y? and make an initial guess on «

e
_n:l.!_n.! 1]

e Qurcase, n=3andN =4

M. Haris University of Nice-Sophia Antipolis 14
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e =
L e
Q Criteria and derivatives at YO
¥l <i<sn=N)
w? = VJ,(7°)
O Design of Experiment
e Proposed by Ronald A. Fisher, in his innovative book The Design of

Experiments (1935)

e Design of all information-gathering exercises where variation is
present

e Purpose of it is to study the effect of some processes or intervention
on some objects

d Check condition on w, i.e.
e Ifw = 0, stop, that is it is already a Pareto optimal point
e Ifw # 0, wis the descent direction

M. Haris University of Nice-Sophia Antipolis
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O Redefine, w as

|...

n-

o
? Gy

||[=

g= 'I'.I:'I.'I'I'.I. “ﬂ-j"z = 'I'.I:'I.'I'I'.I.
.I'J'_f

s

e Constraints take the following new form
n—1

a; =0(Vi); e, =1— )
i=1

o Define Partial derivatives of g w.r.t. A

= (waul— ul) wi=12.n-1
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Q Fori=1,.., n-1
e Define a as NN
al = a’ - l_qu vi=12 -1
L L p"-ﬂﬂ'a‘lu ) sy wen TE

e a’can be set to value either 0 or 1 depending on the condition and
then p can be defined as

. 1]

dg — o foz i
— =0 i = EE
ﬂl.'-l.'[ i /

ﬂl‘.T,;

a 1—a)
i <) A= L/‘aq
ﬂl'.T[ aﬂi

e Summarizing

(ai ﬂ—q:: 0

Eq_ ﬂl‘I[

ﬂl‘I[

: : 4
P max 1_ “[n ﬂ_‘? )
|Eq_ ﬂl‘I[ E
1 ﬂl‘I[
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d Fora,
¢ We make use of the condition that we defined earlier
n—1
t,=1— &
i=1
n-1 n-1 n-1 a
Y=Y af-p)
:;_ ﬁ ﬁ ooy
n—1 a
= D r e q
by = &n + Py Q=  do
e We again have similar conditions
_ i ]
1 Hqur Qr =0
P maxs = 4 ol
P
ﬂ/lqu Q2 <0
\
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0 Maximum p

e Combined, these two gives us a condition on the choice of p. We will
now consider the minimum of p in the set

= min p
Pmax I:=L.---.Tlpl"m

e Discretize this p,.. into @ number of intervais, say 5 or 10

pﬁ=% =1 ...m

e Then recalculate a’ and

a
ai = al — p {i} u vi=L2,.n—1
L'EI:
ey = + p 0" Yi=n

M. Haris University of Nice-Sophia Antipolis 19




O Recalculate w

e This new a takes place of a® and we again calculate w for every p,
until it reaches p,,, or the value of w starts to increase

e As soon as one of the criteria increase, we stop

0 Convergence on w

e We take this new a as a® and repeat the steps until we get
convergence on w

d Compute new values of criteria

e Once convergence on w is achieved we get out of loop and compute
an interval using

J;

;.
e Take maximum among the 3 and discretize the interval [0, t,.,]

'ﬁri,-ma.r =

= max At;
t‘l']'i.llJ: |:=:L—,.1'1 LITaX

M. Haris University of Nice-Sophia Antipolis

20




'&%’éﬁve
5 *clvl'é/gj %3 =
Optimization

d Set design variable as
e For every point in the interval [0, tmax],
Vi =vVo—tw

And then evaluate the criteria at each new vector
jie) = J(¥°—tw) (1 =i =n)

The step size should be such that it is the largest strictly positive real

number for which all the functions are monotone-decreasing over the
interval [0,t, .1

Continue until increase in any one of the criteria is encountered

O This is our updated design vector

e Set this new design vector as Y° and start anew the whole process
from the beginning

Continue until the condition on w is satisfied

lell < tol stop

e This results in one point on the Pareto Optimal set

M. Haris University of Nice-Sophia Antipolis 21




IN R A Rt i

*Example and Solution

Q Criteria J1, J2 and 13
1,60 = 2((2 +V2)y + V2d + )

rz{y}—a( > + — 3 +E+E)

i v v v
1 2 2 1

hw_:—a 2 TE T2

d Set of design variables

- EEEEEE]

o O

1
1
1)°
1

Pt ek ek el
0o oo

il

= =t
p =

{7

M. Haris University of Nice-Sophia Antipolis 22




I NRIA

d Graph of the Pareto front involving

J1lvs.J2

30

25
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J3

d Graph of the Pareto front involving

J1vs. )3
.
\®
\\ ¢ j1-j3 initial
¢ B j1-j3 final
N j1-j3 fina
X3
u —Expon. (j1-j3 initial)
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W ——Expon. (j1-j3 final)
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O For one set of iterations, the trend in the relative values

j1-j3 trend

3.5

R |

2.5

J3

1.5 —4—j1-j3 trend

0.5

J1
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O Trend in the variation of w in one set of iterations

W

o\ o
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O Results for first iteration for the complete set of design
vectors

Y i1 j2 i3 w

0.9 9.442052 26.54321 6.481481 8.258974

1 11.65685 21.5 5.25 6.020793
1.1 14.10479 17.7686 4.338843 4.523512
1.2 16.78587 14.93056 3.645833 3.484256
1.3 19.70008 12.72189 3.106509 2.740463
14 22.84743 10.96939 2.678571 2.194167
1.6 29.84155 8.398438 2.050781 20.14365
1.7 33.68831 7.439446 1.816609 22.29636
1.8 37.76821 6.635802 1.62037 24.35648
1.9 42.08124 5.955679 1.454294 26.33168

2 46.62742 5.375 1.3125 28.23428
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O Results for last iteration for the complete set of design

vectors

0.9

1.1
1.2
1.3
14
1.6
1.7
1.8

1.9

32.73655
33.25493

32.3329
31.38221
32.34522
33.62845
29.00605
30.07409
29.05121
14.92747

29.67797

8.294122

8.20128
8.233263
7.985843
7.881773

7.48323

7.39153
7.913961
8.738566
12.59104

7.391229

1.562837
1.548888
1.603136
1.595362
1.641581
1.603102
1.333886
1.460697
1.440301
2.556135

1.356703

Y i1 j2 i3 w

0.906045
0.894161
0.945527
0.944998
0.993237

0.96563
0.918005

0.88562
0.905873
0.813994

0.892021
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Thank You
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