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Vector equation:

∂

∂t
w +

∂

∂x
fx(w) +

∂

∂y
fy(w) = 0

where:

w =

 h
hu
hv

 fx(w) =

 hu
hu2 + 1

2gh
2

hvu

 fy(w) =

 hv
huv

hv2 + 1
2gh

2


or in 1-D case:

∂

∂t
w +

∂

∂x
fx(w) = 10

where:

w =
[

h
hu

]
fx(w) =

[
hu

hu2 + 1
2gh

2

]
so it can be written as:

∂
∂th+ ∂

∂x (hu) = 0
∂
∂t (hu) + ∂

∂x (hu2 + 1
2gh

2) = 0

Is shallow watter equation on the basal surface.

Lets �rst concentrate on the 1-problem.

2



Mathematical properties of 1-D equation.

If we observe function fx(h, hu) it is easy to calculate eigenvalues of the
Jacobean of fx(h, hu).

A =
∂fx

∂w
=
(

0 1
−u2 + gh 2u

)
The matrix A is easily shown to have real eigenvalues and linearly indepen-

dent eigenvectors. In particular, the eigenvalues of A are given:

λ1 = u+
√
gh λ2 = u−

√
gh.

Numerical approximation(Finite volumes).

We discretaze domain with uniform mesh on the space domain and uniform mesh

on the time domain. On the space domain we have m intervals:
(
xi− 1

2
, xi+ 1

2

)
,

i = 1, ..,m.
We integrate equation on the interval

(
xi− 1

2
, xi+ 1

2

)
×
(
tn, tn+1

)
:

ˆ x
i+ 1

2

x
i− 1

2

ˆ tn+1

tn

∂

∂t
wdtdx+

ˆ x
i+ 1

2

x
i− 1

2

ˆ tn+1

tn

∂

∂x
fx(w)dtdx = 0

and get:

ˆ x
i+ 1

2

x
i− 1

2

(w(tn+1, x)−w(tn, x))dx+
ˆ tn+1

tn

(fx(w(t, xi+ 1
2
))− fx(w(t, xi− 1

2
)))dt = 0

Shortly written:
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(tn+1 − tn)(φi+ 1
2
− φi− 1

2
) + (xi+ 1

2
− xi− 1

2
)(w̄n+1

i − w̄n
i ) = 0

where:

w̄n
i =

1
xi+ 1

2
− xi− 1

2

ˆ x
i+ 1

2

x
i− 1

2

(w(tn, x)dx

φn
i+ 1

2
=

1
tn+1 − tn

ˆ tn+1

tn

(fx(w(t, xi+ 1
2
))dt

If we can approximate �ux φn
i+ 1

2
such that φn

i+ 1
2
≈ φ(w̄n

i , w̄
n
i+1) , ∀i. Then

scheme becomes:

w̄n+1
i = w̄n

i +
tn+1 − tn

xi+ 1
2
− xi− 1

2

[φ(w̄n
i , w̄

n
i+1)− φ(w̄n

i−1, w̄
n
i )]

Approximation of the �ux:

Scheme is stable if we approximate φn
i+ 1

2
≈ φ(w̄n

i , w̄
n
i+1) like:

φn
i+ 1

2
≈ φ(w̄n

i , w̄
n
i+1) =

1
2

(fx(w̄n
i ) + fx(w̄n

i+1)+ | ξ | (w̄n
i − w̄n

i+1))

where | ξ |≥ max(| λ |)w∈{w̄n
i

w̄n
i+1} .

Now it is importante to say what are the initial and what are the boundary
conditions.
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Initial and boundary conditions.
In time t = 0, h and u are known. When we are calculating w̄n+1

i and
we are on the boundary, so w̄n

0 or w̄n
m+1 are unknown. Since we are solving

equation in the closed box. That means that values in w̄n
0 =

(
hn

0

hun
0

)
and

w̄n
m+1 =

(
hn

m+1

hun
m+1

)
must be �xed such that velocity on the boundary point

is zero and h has the same value. That is satis�ed if w̄n
0 =

(
1 0
0 −1

)
w̄n

1 ,

(w̄n
m+1 =

(
1 0
0 −1

)
w̄n

m ). It is important to notice that w̄n
0 and w̄n

m+1 are

values that are not calculated in the domain. But since we are simulating closed
box, above conditions are boundary conditions that must be satis�ed.

Second order of approximation.

So far scheme was considering that on intervals
(
xi− 1

2
, xi+ 1

2

)
, i = 1, ..,m, func-

tions h and hu are constant. Second order approximation we can obtain if we
try to modify values of those functions, knowing their volumes on the intervals,
such that:

• volumes on the intervals remain the same.

• functions on the intervals are linear.

• Total variation of the functions is smaller.

This problem can be solved by max principle.

For example in some time step, on the intervals
(
xi− 3

2
, xi− 1

2

)
,
(
xi− 1

2
, xi+ 1

2

)
,(

xi+ 1
2
, xi+ 3

2

)
, function h has constant values: h(xi−1), h(xi) and h(xi+1). If
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we approximate h(x) on the interval
(
xi− 1

2
, xi+ 1

2

)
with: h1(x) =

h(xi+1)−h(xi−1)
2dx (x− xi) + h(xi) or h2(x) = h(xi+1)−h(xi)

dx (x− xi) + h(xi)
or h3(x) = h(xi)−h(xi−1)

dx (x− xi) + h(xi).

For linear function hk(x), k = 1, 2, 3. we check is it satis�ed max principle:

hk(xi+ 1
2
) ∈ (h(xi), h(xi+1)) and hk(xi− 1

2
) ∈ (h(xi−1), h(xi)).

First we check is function h1 satis�ed max principle if not then we check the
other two functions. The function that satisfy max principle can be approxi-
mation on the interval. If non of the hk(x), k = 1, 2, 3. is good approximation
then we can for that interval remain �rst order approximation. The method
that has been explained is called min mod. On the border intervals we remain
�rst order of approximation because no matter how we approximate function
on this intervals total variational will increase. Picture below shows how that
method works. Using this method we make total variation smaller.
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Second order approximation of the �ux we obtain with:

φn
i+ 1

2
= φ(w̄n

i , w̄
n
i+1) =

1
2

(fx((̄w
n

i )R) + fx((w̄n
i+1)L)+ | ξ | ((̄wn

i )R − (w̄n
i+1)L))

where (̄w
n

i )R marks value of the corresponding approximated function in
the right point of the interval i. And (w̄n

i+1)L marks value of the corresponding
approximated function in the left point of the interval i+ 1.

Second order approximation scheme - for this scheme we are using
predictor and corrector.
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w̄∗i = w̄n
i +

1
2 (tn+1 − tn)
xi+ 1

2
− xi− 1

2

[φ(w̄n
i , w̄

n
i+1)− φ(w̄n

i−1, w̄
n
i )]

w̄n+1
i = w̄n

i +
tn+1 − tn

xi+ 1
2
− xi− 1

2

[φ(w̄∗i , w̄
∗
i+1)− φ(w̄∗i−1, w̄

∗
i )]

Mathematical properties of 2-D equation.

If we observe functions fx(h, hu) and fy(h, hu) it is easy to calculate eigen-
values of the Jacobean of fx and fy.

A =
∂fx

∂w
=

 0 1 0
−u2 + gh 2u 0
−uv v u



B =
∂fy

∂w
=

 0 1 0
−uv u v

−v2 + gh 2v 0


The matrix A is easily shown to have real eigenvalues and linearly indepen-

dent eigenvectors. In particular, the eigenvalues of A are given:

λ1 = u+
√
gh λ2 = u−

√
gh λ3 = u.

and for B we have the same:

λ1 = v +
√
gh λ2 = v −

√
gh λ3 = v.
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Numerical approximation of 2-D equation(Finite volumes).

Like in 1-D case, we discretaze domain with uniform mesh on the space do-
main and uniform mesh on the time domain. On the space domain we have

intervals:
(
xi− 1

2
, xi+ 1

2

)
×
(
yj− 1

2
, yj+ 1

2

)
. We integrate equation on the interval(

xi− 1
2
, xi+ 1

2

)
×
(
yj− 1

2
, yj+ 1

2

)
×
(
tn, tn+1

)
:

ˆ y
j+ 1

2

y
j− 1

2

ˆ x
i+ 1

2

x
i− 1

2

ˆ tn+1

tn

∂

∂t
wdtdxdy +

ˆ y
j+ 1

2

y
j− 1

2

ˆ x
i+ 1

2

x
i− 1

2

ˆ tn+1

tn

∂

∂x
fx(w)dtdxdy+

+
ˆ y

j+ 1
2

y
j− 1

2

ˆ x
i+ 1

2

x
i− 1

2

ˆ tn+1

tn

∂

∂y
fy(w)dtdxdy = 0

we get:

ˆ y
j+ 1

2

y
j− 1

2

ˆ x
i+ 1

2

x
i− 1

2

(w(tn+1, x, y)−w(tn, x, y))dxdy+
ˆ tn+1

tn

ˆ y
j+ 1

2

y
j− 1

2

(fx(w(t, xi+ 1
2
, y))−fx(w(t, xi− 1

2
, y)))dydt+

+
ˆ tn+1

tn

ˆ x
i+ 1

2

x
i− 1

2

(fy(w(t, x, yj+ 1
2
))− fy(w(t, x, yj− 1

2
)))dxdt = 0

Shortly written:

(tn+1−tn)hy(φn
i+ 1

2 ,j−φ
n
i− 1

2 ,j)+(tn+1−tn)hx(φn
i,j+ 1

2
−φn

i,j− 1
2
)+hxhy(w̄n+1

i −w̄n
i ) = 0

where:

w̄n
i =

1
hxhy

ˆ y
j+ 1

2

y
j− 1

2

ˆ x
i+ 1

2

x
i− 1

2

(w(tn, x, y)dxdy

9



φn
i+ 1

2 ,j =
1

(tn+1 − tn)hy

ˆ y
j+ 1

2

y
j− 1

2

ˆ tn+1

tn

(fx(w(t, xi+ 1
2
, y))dtdy

φn
i,j+ 1

2
=

1
(tn+1 − tn)hx

ˆ x
i+ 1

2

x
i− 1

2

ˆ tn+1

tn

(fx(w(t, x, yj+ 1
2
))dtdx

where hx = xi− 1
2
− xi+ 1

2
, hy = yj− 1

2
− yj+ 1

2
.

If we can approximate �ux φn
i,j+ 1

2
such that φn

i,j+ 1
2

= φ(w̄n
i,j , w̄

n
i,j+1) , and

φn
i+ 1

2 ,j
= φ(w̄n

i,j , w̄
n
i+1,j) the we have obtained scheme.

Approximation of the �ux:

Scheme is stable if we approximate:

φn
i+ 1

2 ,j = φ(w̄n
i,j , w̄

n
i+1,j) =

1
2

(fx(w̄n
i,j) + fx(w̄n

i+1,j)+ | ξ1 | (w̄n
i,j − w̄n

i+1,j))

and

φn
i,j+ 1

2
= φ(w̄n

i,j , w̄
n
i,j+1) =

1
2

(fy(w̄n
i,j) + fy(w̄n

i,j+1)+ | ξ2 | (w̄n
i,j − w̄n

i,j+1))

where | ξ1 |≥ max(| λ |fx)w∈{w̄n
i,j

,w̄n
i+1,j} and | ξ2 |≥ max(| λ |fy )w∈{w̄n

i,j
,wn

i,j+1} .

10



references:

DRYGRANULA FLOWSWITH EROSION/DEPOSITION PRO-
CESS-C.Y.Kuo, B. Nkonga, M. Ruchiotto, Y.C. Tai, B. Bracconoier.

On new erosion models of Savaga-Hutter type for avalanches - F.
Bouchut, E.D.Fernandez-Nieto, A. Mangeney, P.Y.Lagree

11


