Phase reconstruction from intensity or
amplitude measurements of the
electromagnetic field !

Alexey A. Novikov

July 16, 2009

!Special thanks to my supervisors - Professor Claude Dedaban and Professor
Christian Pichot

1 Introduction

The phase problem is the name given to the problem of loss of information
(the phase) from a physical measurement. The name itself comes from the
field of x-ray crystallography, where the phase problem has to be solved for
the determination of a structure from diffraction data. The phase problem is
also met in the fields of imaging and signal processing. Various approaches
have been developed over the years to solve it.

Let S’(R) be the space of tempered distribution on R and set

A={g€S'(R):he L(R)}

Here h denotes the Fourier Transform, using the convention

nk) = | T)t

—00

for g € L'(R).

Recall that for any g € S’(R), the Fourier transform is defined as another
member of S’(R). A first statement of the problem in which we are interested
is as follows.

Phase determination problem. Find g € A given |h(k)| for k€ R

By the Fourier inversion theorem, g is uniquely determined by the com-
plex valued function h(k) for k& € R, thus the essence of the matter is to
determine the phase ¢(k) = arg h(k) from the amplitude r(k) = |h(k)|. Prob-
lems of phase reconstuction arise in a number of interesting application areas.

Now stated in this form, the problem is quite hopeless. If, for example,
we fix any non-negative r € L?(R), and

G(t) 1 /+OO T(kj)e_i(a(k)—"kt)

")

then, for any measurable real valued function 6, we have G € L?(R) and
|H (k)| = r(k) on R. That is to say, in this generality, the phase and the
amplitude are completely independent of each other. On the other hand,
particular phase determination problems always have more specific features
which need to be taken into account, which is to say that, typically, there is
a smaller class B C A of admissible solutions g, so that we really mean to
solve the following problem.

Constrained phase determination problem. Find g € B given
|h(k)| for k€ R

If the constraint set B is sufficiently small, then one may hope that the
phase of h is uniquely detemined by its amplitude, or at least that the phase
is constrained enough by the amplitude to considerably reduce the degree of
non-uniqueness. Each different choice of admissible class B leads to a differ-
ent problem with its own special features and difficulties. The admissibility
criteria in the definition of B might be in the form of explicit conditions to
be satisfied by the solution g, but could also incorporate other kinds of con-
straint, such as extra conditions related to the behaviour of h, which restrict
the admissible solutions in an implicit way.

Phase identification problems of the type just described may be regarded
as a special case of the more general type of problem in which one seeks to
recover a function g from limited knowledge about both ¢ and its Fourier
transform h. If we write, for example, g(t) = p(t)e?®) and as above h(k) =
r(k)e®) | then we may ask what information about the four functions p, 8, r, ¢
suffices to determine g uniquely. Obviously, either pair (p,0) or (r,¢) is
enough. In the applications discussed below, g is often real valued, so that we
are attempting to recover g from the prescribed function r(k) with 6(t) =0
or m. More generally, one might wish to recover g from the pair (r,p). Fi-
nally, it may happen that some or all of these functions are known only over
a portion of their domains.

2 Examples

The phase retrieval problem is of wide interest because there are a variety of
physically important problems in which essential quantities may be regarded
as complex valued functions are thus characterized by amplitude and phase,
where the phase is difficult or impossible to measure, while the amplitude is
easily accessible to measurement or subject to some simple kind of inference.
If knowledge of the phase is required for some reason, then we are faced with
the constrained phase determination problem described in the first section,
where the class B is defined in such a way as to incorporate constraints which
are specific to each particular case.

Such problems arise frequently in optics, where the complex valued func-
tion represents a propagating electromagnetic wave which is generally a func-
tion of position. When such a wave is scattered off an object, as in an electron
microscope, then information about the shape of the object is propated by the
wave and is encoded in both the amplitude and the phase. Only the wave
amplitude may be directly measured, and so one seeks to recover the lost
phase information in order to characterize the object as thoroughly as possi-
ble. The underlying function g(¢) (here ¢ may be a two- or three-dimensional
variable) can often be assumed to be a non-negative function of compact
support.

A related problem in lens design has recently been studied. One is given
a real non-negative function f(z), = € Q C R? representing the transparency
of a lens, and a desired far-field intensity pattern ®(£) and we seek to find
a function ¢(x), = € , representing the thickness of the lens so that the
Fourier transform of fe’ has amplitude ®. The constraint set B will then
consist of functions g of compact support for which |g| is prescribed.

One other important example arises in x-ray crystallography. Here one
seeks to recover the electron density function p characterizing a certain
crystal structure, which is taken to be a periodic function on R®. In an x-ray
diffraction experiment one measures the so-called structure factors, which are
essentially the magnitude of the Fourier coefficients of p or, equivalently,

the amplitude of the Fourier transform of p understood as a sum of delta
functions supported on an appropriate lattice in R3. The class B will consist
of positive, periodic functions.

X-ray crystallography can locate every atom in a zeolite, an aluminosili-
cate with many important applications, such as water purification.

The most important application of phase retrieval is X-ray crystallogra-
phy, awarded of several Nobel prizes.

3 Mathematical Model

Given Y € R3, a set of points; n and m are given integers, such that
mCN, nCN, n<m

¢ is a family of functions: ¢ : Y — C k= 1,2,.... n

Y., is aset of m points: Y, ={z, € Yp=1,2,..., m}

Let .
e(u,r) = Z uy ¢ (x)
k=1
and
B,) = le(u, 2)]” = e(u, 2) e(u,2)
Thus,

M,) = (z) (z)

The problem is: given m positive real numbers v, such that v, € R".
Find n complex numbers u; so that

h(u,z,) =, p=12...m

In order to solve the problem we should minimize the following functional:

J(u) = Z(h(u, Tp) — 7p)2
p=1
For that we should perform the following steps:

1) Get the expressions %

2) Get the descent direction d associated with Fletcher-Reeves modifica-
tion

3) Use Newton method to find the mininum in the descent direction

First of all, we should write the expression of the derivative of the cost
function with respect to the real parts of the vector u

oh

97 on
aOéR

80[}{

=23 (h(u,z,) —)

p=1

where the derivatives of h with respect to the real parts of the vector u
are as the following

Oh 00 o
aOéR B 80&3 - 8aR 8aR

where the derivatives of the auxiliary function z with respect to the real
parts of the vector u are as the following

9z _ 0 Zn:(azk_1 + douy) () | = ¢§+1(a:)

8aR 8043 =1

Its complex conjugate is

9z
8(13

= ¢§+1(:L')

The expression of the derivative of the cost function with respect to the
imaginary parts of the vector u

oJ

dar

=23 (b) —) o

p=1

where the derivatives of h with respect to the imaginary parts of the
vector u are as the following

oh 0 0z _ 0z

where the derivatives of the auxiliary function z with respect to the imag-
inary parts of the vector u are as the following

0z 0 n
— | D (o1 + i) pp(z) | =i Prar (2)

8041 an =1

Its complex conjugate is

4 Optimization Methods

The class of conjugate direction methods can be viewed as being interme-
diate between the methods of steepest descent and Newton’s method. The
conjugate direction methods have the following properties:

1. Solve quadratics of n variables in n steps

2. The usual implementation, the conjugate gradient algorithm, requires
no Hessian matrix evaluations

3. No matrix inversion and no storage of an n x n matrix required

Pts. 2 and 3 are very important in our case, because we have to handle
with huge systems of equations.

The conjugate gradient algorithm does not use the prescribed conjugate
directions, but instead computes the directions as the algorithm progresses.
At each stage of the algorithm, the direction is calculated as a linear com-
bination of the previous direction and the current gradient, in such a way
that all the directions are mutually Q-conjugate, hence the name conjugate
gradient algorithm. This calculation exploits the fact that for a quadratic

7

function of n variables, we can locate the function minimizer by performing
n searches along mutually conjugate directions.

The standard conjugate gradient algorithm is summarized be-
low.

1. Select the initial point u(?
2. ¢ = vJ(u(O))
If ¢g© =0, stop, else set d© = —¢(©

_ T
3. . — —W
4. uD =y ® 4o a®)
5‘ g(k‘-l-l) — vJ(u(k+1))
If g+ =0, stop

(k+1)T d(k)
6. 5 =9 Q7
AT Qqk

7. d(k+1) _ _g(k+1) + ﬂk} d(k)
8. Go to step 3

For a quadratic function, the matrix Q, the hessian of the quadratic, is
constant. However, for a general nonlinear function the Hessian is a matrix
that has to be reevaluated at each iteration of the algorithm. This can be
computationally very expensive. Thus, an efficient implementation of the
conjugate gradient algorithm that eliminates the Hessian evaluation at each
step is desirable.

Observe that) appears only in the computation of the scalars a; and
Or. Because

Q= arg m>11(} J(u® + o d®)

8

the closed form formula for a4 in the algorithm can be replaced by a nu-
merical line search procedure. Therefore, we only need to concern ourselves
with the formula for ;. Fortunately, elimination of () from the formula is
possible and results in algorithms that depend only on the function and gra-
dient values at each iteration.

There are some modifications of the formula which are based on alge-
braically manipulating the formula (; in such a way that @) is eliminated.

Three well-known modifications are:

1. The Hestenes-Stiefel formula

- g(k+1)T {g(k'—i-l) _ g(k)}
B = dk [gk+1) — (k)]

2. The Polak-Ribiere formula

5 g(k+1)T {g(k—l-l) o g(k)}
k pr—
g(k)Tg(k)

3. The Fletcher Reeves formula

B g(k—i-l)T (k+1)

By = J

gR)T g(k)
The above formulas give us conjugate gradient algorithms that do not re-
quire explicit knowledge of the Hessian matrix (). All we need the objective
function and gradient values at each iteration.

We need a few more slight modifications to apply the algorithm. The
termination criterion s7.J(u**1) = 0 is not practical. A suitable practical
stopping criterion needs to be used.

For nonquadratic problems, the algorithm will not usually converge in n
steps, and as the algorithm progresses, the ”Q-conjugacy” of the direction

vectors will tend to deteiorate. Thus, a common practice is to reinitialize the
direction vector to the negative gradient after every few iterations (e.g., n or
n 4+ 1), and continue until the algorithm satisfies the stopping critetion.

A very important issue in minimization problems of nonquadratic func-
tions is the line search. The purpose of the line search is to minimize
(@) = J(u*) 4+ ad®) with respect to o > 0. A typical approach is
to bracket or box in the minimizer and then estimate it. The accuracy of the
line search is a critical factor in the performance of the conjugate gradient
algorithm. If the line search is known to be inaccurate, the Hestenes-Stiefel
formula for 3 is recommended.

In general, the choice of which formula for ;. to use depends on the objec-
tive function. For example, the Polak-Ribiere formula is known to perform
far better than the Fleetcher-Reeves formula in some cases, but not in others.

In order to find the minimum in the descent direction we need to solve
the following problem

Qi = argmin J(u® + o d®)

Recall that the method of steepest descent uses only the first derivatives
(gradients) in selecting a suitable search direction. This strategy is not al-
ways the most effective. If higher derivatives are used, the resulting iterative
algorithm may perform better than the steepest descent method. Newton’s
method (sometimes called Newton-Raphson method) uses first and second
derivatives and indeed does perform better than the steepest descent method
if the initial point is close to the minimizer. The idea behind this method as
follows. Given a starting point, we construct a quadratic approximation to
the objective function that matches the first and second derivative values at
the point. We then minimize the approximate (quadratic) function instead
of the original objective function. We use the minimizer of the approximate
function as the starting point in the next step and repeat the procedure it-
eratively.

Observe that the k-th iteration of Newton’s method can be written in
two steps as

10

1. Solve F(u®)d®) = —g®*) for 4®
2. Set uM = o®) 4 k)

To avoid confusions let us use ¢ instead of a. So we need to solve the
following problem:
& = argmin J (u® + €)

Assume that
v®) = ®) 4 gq®

k) _QZ(%)2

Newton’s method requires computing the gradient of J with respect to &
on each iteration

97 (vW) - (k) Oh(v™,)
o€ T 2;:1 (h(v ,Tp) — ’Yp) o
The derivative of the function h with respect to £ is

Oh(v®, x,) @9 890
23 NS

The auxiliary function 6 is

0= zn: v® gy ()
k=1

The first derivative of # with respect to £ is

00 0 <& n
87528752 gdm

k=1

11

Its complex conjugate is

gg - ggzn:v(k) dr(z) = kzi:ldk oi(x)

k=1

Newton’s method also requires computing of the second derivative of J
with respect to &

0?J " (Oh(v®) z,) ? m) 2wk z,)
o5 (B g)

The second derivative of the function h with respect to &

2

Ph(w™,x,) 0000 5 09
I T T P T:

The k-th iteration of the Newton’s method is as follows

0J(E-1) (aQJ@k_l))‘l
o0& 0&?

Sk = &1+

5 Implementation and Technologies

Microsoft Visual Studio is an Integrated Development Environment (IDE)
from Microsoft. It can be used to develop console and graphical user in-
terface applications along with Windows Forms applications, web sites, web
applications, and web services in both native code together with managed
code for all platforms supported by Microsoft Windows, Windows Mobile,
Windows CE, NET Framework, .NET Compact Framework and Microsoft
Silverlight.

12

Visual Studio includes a code editor supporting IntelliSense as well as
code refactoring. The integrated debugger works both as a source-level de-
bugger and a machine-level debugger. Other built-in tools include a forms
designer for building GUI applications, web designer, class designer, and
database schema designer. It allows plug-ins to be added that enhance the
functionality at almost every level - including adding support for source con-
trol systems (like Subversion and Visual SourceSafe) to adding new toolsets
like editors and visual designers for domain-specific languages or toolsets for
other aspects of the software development lifecycle (like the Team Founda-
tion Server client: Team Explorer).

In the problem we need to handle with complex-valued functionals. Mi-
crosoft Visual Studio gives the possibility to work with them easily.

The standard library < complex > defines the container template class
complex and its supporting templates.

The most important functions of the library are

abs() (extracts the modulus of a complex number)

conj() (returns the complex conjugate of a complex number)
exp() (returns the exponential function of a complex number)
imag() (extracts the imaginary component of a complex number)
real() (extracts the real component of a complex number)

AN

The construction complexr < double > describes an object that stores an
ordered pair of objects both of type double, the first representing the real
part of a complex number and the second representing the imaginary part.

The explicit specialization of the template class complex to a complex
class of type double differs from the template class only in the constructors
it defines. The conversion from float to double is allowed to be implicit, but
the conversion from long double to double is required to be explicit. The
use of explicit rules out the initiation with type conversion using assignment
syntax

A simple example of using the basic functions and operations of the li-
brary < complex > is shown below

13

#include <complex>
#include <iostream>

int main()

using namespace std;
double pi = 3.14159265359;

// The first constructor specifies real & imaginary parts

complex <double> ci1 (4.0 , 5.0);

cout << ”Specifying initial real & imaginary parts,\n”
<< ” as type double gives cl = ” << cl << endl;

// The second constructor initializes values of the real &

// imaginary parts using those of complex number of type float

complex <float> c2float (4.0 , 5.0);

complex <double> c2double (c2float);

cout << ”Implicit conversion from type float to type double,”
<< "\n gives c2double = ” << c2double << endl;

// The third constructor initializes values of the real &

// imaginary parts using those of a complex number

// of type long double

complex <long double> c3longdouble (4.0 , 5.0);

complex <double> c3double (c3longdouble);

cout << ”Explicit conversion from type float to type double,”
<< ”\n gives c3longdouble = 7 << c3longdouble << endl;

// The modulus and argument of a complex number can be recovered

double absc3 = abs (c3longdouble);

double argc3 = arg (c3longdouble);

cout << ”"The modulus of c3 is recovered from c3 using: abs (¢c3) =7
<< absc3 << endl;

cout << ”Argument of c3 is recovered from c3 using:\n arg (c3) =7
<< argc3 << ” radians, which is 7 << argc3 % 180 / pi
<< 7 degrees.” << endl;

14

6 Results

=2, m=5

1 2 a 4]
iter _num

15

101

BGrad Jj| B

n=2 m=§

16

=2, m=30

D | P PR P P | | RN DR P PR PR PFFRS BUC O PRI PR PR PR PRI PR PR DR P R |

O 20 40 B0 80
iter_num

17

=, mEgl)

500;
[Grad JyI .
iy
=
20 |
H II 4| = '
100; \ s 4f }H—H AN
q "ul_ ’ '.,I' 1| 'xlllll_.llllllll
u-lxﬁk, i "-.'J llIL'I . "-LJ i,|| "-..fu'lr Ty II1I “I
T TR E R T R TR T T
References

[1] M.S.Bazaraa, H.D.Sherali, and C.M.Shetty, Nonlinear Programming:
Theory and Algorithms. New York: Wiley, Second ed., 1993

[2] Edwin K.P.Chong, Stanislaw H. Zak, An Introduction To Optimization.
New York: Wiley, Second ed., 2001

[3] Michael V. Klibanov, Paul E. Sacks, and Alexander V. Tikhonravov,
The Phase Retrieval Problem. Inverse Problems 11 (1-28), 1995

[4] http://en.wikipedia.org/wiki/Phase_retrieval
[5] http://en.wikipedia.org/wiki/Phase_problem

[6] http://ca.wikipedia.org/wiki/Difraccio_de_raigs_X

18

[7] http://en.wikipedia.org/wiki/Conjugate_gradient_method
[8] http://ca.wikipedia.org/wiki/Metode_de_Newton

[9] http://en.wikipedia.org/wiki/Newton’s_method_in_
optimization

19

