Electromagnetic inverse scattering problem

Sofranac Martina
17.07.2009.

Green Representation for Electromagnetic field :

$$
\begin{aligned}
& \vec{E}_{k}(x)=\vec{E}_{k}^{i}+i \omega \mu \oint_{\left(S_{k}\right)} G(x, y) \overrightarrow{j_{k}}(y) d s(y)-\frac{1}{i \omega \epsilon} \oint_{\left(S_{k}\right)} \operatorname{grad}_{x} G(x, y) \operatorname{div}_{S k} \overrightarrow{j_{k}}(y) d s(y)-\operatorname{rot} \oint_{\left(S_{k}\right)} G(x, y) \overrightarrow{m_{k}}(y) d s(y) \\
& \vec{H}_{k}(x)=\vec{H}_{k}^{i}+i \omega \epsilon \oint_{\left(S_{k}\right)} G(x, y) \vec{m}_{k}(y) d s(y)-\frac{1}{i \omega \mu} \oint_{\left(S_{k}\right)} \operatorname{grad}_{x} G(x, y) \operatorname{div}_{S k} \vec{m}_{k}(y) d s(y)-r o t \oint_{\left(S_{k}\right)} G(x, y) \overrightarrow{j_{k}}(y) d s(y)
\end{aligned}
$$

Boundary conditions:

$$
\begin{aligned}
& \overrightarrow{n_{k}} \times \overrightarrow{E_{k}}+\overrightarrow{n_{l}} \times \overrightarrow{E_{l}}=0=\overrightarrow{m_{k}}+\overrightarrow{m_{l}} \\
& \overrightarrow{n_{k}} \times \vec{H}_{k}+\overrightarrow{n_{l}} \times \vec{H}_{l}=0=\overrightarrow{j_{k}}+\overrightarrow{j_{l}}
\end{aligned}
$$

Rumsey's reaction concept

- The reaction concept between $\hat{U}_{k} \vec{m}_{l j}$ and $\hat{f}_{t}^{t} \vec{m}_{h}^{t_{k}}$ is defined by:

$$
R_{S_{1}}\left(\hat{j}_{l} \vec{m}_{k}, \hat{J}_{k}^{t} \vec{m}_{l}^{t}\right)=\oint_{S_{1}} \vec{E}_{l}(x) \cdot \cdot_{l}^{t}(x)-\vec{m} f(x) \cdot \vec{H}_{l}(x) d s^{t}(x)
$$

- This concept can be applied to ${\overrightarrow{\vec{E}_{l}} \vec{H}_{\beta}^{\prime}}^{\prime}$ if sources are present in Ω_{l} :

$$
R_{S}\left(\dot{t}_{l}^{a}, \vec{m}_{l}^{a}, \hat{U}_{b}^{t} \vec{m}_{b}^{t}\right)=\oint_{S} \vec{E}_{l}(x) \cdot \vec{J} f(x)-\vec{m}^{t} f(x) \cdot \vec{H}_{l}^{i}(x) d s^{t}(x)
$$

Variational formulation of integral equations

- Using the boundary conditions, the total reaction on all domains is expressed as:

$$
\sum_{l=1}^{N} R_{S_{l}}\left(\vec{t}_{l} \vec{m}_{l}, \stackrel{\rightharpoonup}{l}_{l}^{t} \vec{m}_{l}^{t}\right)+R_{S_{l}}\left(\vec{j}_{l}^{a}, \vec{m}_{l}^{a}, \vec{J}_{l}^{t} \vec{m}_{l}^{t}\right)=0
$$

Variational formulation of our problem

$$
\sum_{l=1}^{N} \mu_{r l} Q_{S l}\left(S_{t}, j_{l}, j_{l}^{t}\right)+\frac{k_{l}^{2}}{\mu_{r l}} Q_{s l}\left(S_{t}, m_{l}, m_{l}^{t}\right)-P_{s l}\left(S_{t}, j_{l}, m_{l}^{t}\right)-P_{s l}\left(S_{t}, m_{l}, j_{l}^{t}\right)=-\sum_{l=1}^{N} \oint_{S l}\left(E_{l}^{i}(x) j_{l}^{t}-H_{l}^{i}(x) m_{l}^{t}\right) d s(x)
$$

where $P_{s l}$ and $Q_{s l}$ are deffined as :

$$
\begin{gathered}
Q_{S l}\left(S_{t}, j_{l}, j_{l}^{t}\right)=\oint_{S^{t}} \oint_{S^{l}} G(k, x, y)\left(j(y) j^{t}(x)-\frac{1}{k_{l}^{2}} \operatorname{div}_{S} j(y) d i v_{S^{t}} j^{t}(x)\right) d s(x) d s^{t}(y) \\
P_{S l}\left(S_{t}, j_{t}, m_{l}^{t}\right)=\oint_{S^{t}} \oint_{S^{l}}[\operatorname{grad}(G(k, x, y) \times j(y))] p^{t}(x) d s(y) d s^{t}(x)
\end{gathered}
$$

Currents of the triangle T can be expressed as it is written:

$$
\begin{gathered}
\overrightarrow{j^{T}}=\overrightarrow{j_{1}^{T}} \cdot J_{1}^{T}+\overrightarrow{j_{2}^{T}} \cdot J_{2}^{T}+\overrightarrow{j_{3}^{T}} \cdot J_{3}^{T} \\
\overrightarrow{m^{T}}=M_{1}^{T} \cdot \overrightarrow{m_{1}^{T}}+M_{2}^{T} \cdot \overrightarrow{m_{2}^{T}}+M_{3}^{T} \cdot \overrightarrow{m_{3}^{T}}
\end{gathered}
$$

Bilinear form is tranformed into descrete one:
$\sum_{l=1}^{N} \sum_{u=1}^{N E_{1}} \sum_{w=1}^{N E_{1}} \mu_{r l} A_{l}^{u w}\left(\vec{j}_{l}^{u}, \stackrel{\rightarrow t w}{j_{l}}\right)+\frac{k_{l}^{2}}{\mu_{r l}} A_{l}^{u w}\left(\vec{p}_{l}^{u}, \vec{p}_{l}^{t w}\right)-B_{l}^{u w}\left(\vec{j}_{l}^{u}, \stackrel{\rightarrow t w}{j_{l}}\right)-B_{l}^{u w}\left(\vec{p}_{l}^{u}, \vec{p}_{l}^{t w}\right)=\sum_{l=1}^{N} \sum_{w=1}^{N E_{1}} C_{l}^{w}\left(\vec{E}_{l}^{i}, \vec{H}_{l}^{i}, \overrightarrow{j_{l}}, \stackrel{t w}{p_{l}}\right)$

Matrix Formulation of problem : $\mathrm{Ax}=\mathrm{C}$

Integral solver in comparison with Differential solvers :

Matrix A is dense, contains $\mathrm{N}^{*} \mathrm{~N}$ block
Much more storage space
More CPU time

Hermite interpolation

Hermite(Osculating) polinomials are generalization of both the Taylor and Langrangian polynomials. If we have given $\mathrm{n}+1$ points $x_{0}, x_{1}, \ldots, x_{n}$ and nonnegative integers m_{0}, \ldots Hermite polynomial approximating a function f is ploynomial of at least degree of m_{i} at point x_{i} where f belongs to $C^{m}(a, b)$ and $\mathrm{m}=\max \left\{m_{0}, \ldots m_{n}\right\}$ and x_{i} belongs to $|\mathrm{a}, \mathrm{b}|$ for every $\mathrm{i}=0, \ldots \mathrm{n}$.

The degree of this osculating polynomial will be at most :

$$
M=\sum_{i} m_{i}+n
$$

The number of conditions to be satisfied is $\sum_{i} m_{i}+(n+1)$ and a polynomial of degree M has $\mathrm{M}+1$ coefficients that has to satisfy these conditions.

By definition, if we have $\mathrm{n}+1$ distinct numbers in range $|\mathrm{a}, \mathrm{b}|$ and m_{i} are nonnegative integers associated with x_{i}, so for each $\mathrm{i}=0, \ldots, \mathrm{n}$.

If $\mathrm{m}=\max _{0 \leq i \leq n} m_{i}$ and $\mathrm{f} \in C^{m}[a, b]$
so Hermite polynomial approximating f is the polynomial P of least degree m such that
$\frac{d^{k} P\left(x_{i}\right)}{d x^{k}}=\frac{d^{k} f\left(x_{i}\right)}{d x^{k}}$ for each $\mathrm{i}=0,1, \ldots, \mathrm{n}$ and $\mathrm{k}=0,1, \ldots, m_{i}$.

If the function f belongs to $C^{1}[a, b]$ and $x_{0}, x_{1}, \ldots, x_{n}$ that are in range $|\mathrm{a}, \mathrm{b}|$ are distinct, tha unique polynomial of least degree matching with f and f^{\prime} at $x_{0}, x_{1}, \ldots, x_{n}$ is the polynomial of degree at most $\mathrm{M}=2 \mathrm{n}+1$ given as :

$$
H_{2 n+1}(x)=\sum_{j} f\left(x_{j}\right) H_{n, j}(x)+\sum_{j} f^{\prime}\left(x_{j}\right) \hat{H}_{n, j}(x)
$$

where:

$$
H_{n, j}(x)=\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] L_{n, j}^{2}(x)
$$

and

$$
\hat{H}_{n, j}(x)=\left(x-x_{j}\right) L_{n, j}^{2}(x)
$$

here $L_{n, j}(x)$ denotes Langrange coefficient polynomial of degree n that si defined by formula :

$$
L_{n, k}(x)=\frac{\left(x-x_{0}\right) \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots .\left(x_{k}-x_{n}\right)}
$$

k -th divided difference with respect to $x_{i}, x_{i+1}, \ldots, x_{i+k}$ will be:

$$
f\left[x_{i,} x_{\left.i+1, \ldots ., x_{i+k}\right]=\frac{f\left[x_{i+1}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1} \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}}, \frac{1}{}}^{\text {. }}\right.
$$

Using Newton divided differences we can simplify programming of interpolation

$$
E(\varepsilon)=c_{5} \varepsilon^{5}+c_{4} \varepsilon^{4}+c_{3} \varepsilon^{3}+c_{2} \varepsilon^{2}+c_{1} \varepsilon+c_{0}
$$

Newton divided differences

x	$\mathrm{f}(\mathrm{x})$	First divided differnces	Second divided differences	Third divided differences
x_{0}	$f\left[x_{0}\right]$			
		$f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}$		
x_{1}	$f\left[x_{1}\right]$		$f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}$	
		$f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}$		$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}$
x_{2}	$f\left[x_{2}\right]$		$f\left[x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right]}{x_{3}-x_{1}}$	
		$f\left[x_{2}, x_{3}\right]=\frac{f\left[x_{3}\right]-f\left[x_{2}\right]}{x_{3}-x_{2}}$		$f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=\frac{f\left[x_{2}, x_{3}, x_{4}\right]-f\left[x_{1}, x_{2}, x_{3}\right]}{x_{4}-x_{1}}$
x_{3}	$f\left[x_{3}\right]$		$f\left[x_{2}, x_{3}, x_{4}\right]=\frac{f\left[x_{3}, x_{4}\right]-f\left[x_{2}, x_{3}\right]}{x_{4}-x_{2}}$	
		$f\left[x_{3}, x_{4}\right]=\frac{f\left[x_{4}\right]-f\left[x_{3}\right]}{x_{4}-x_{3}}$		$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{3}, x_{4}, x_{5}\right]-f\left[x_{2}, x_{3}, x_{4}\right]}{x_{5}-x_{2}}$
x_{4}	$f\left[x_{4}\right]$		$f\left[x_{3}, x_{4}, x_{5}\right]=\frac{f\left[x_{4}, x_{5}\right]-f\left[x_{3}, x_{4}\right]}{x_{5}-x_{3}}$	
		$f\left[x_{4}, x_{5}\right]=\frac{f\left[x_{5}\right]-f\left[x_{4}\right]}{x_{5}-x_{4}}$		
x_{5}	$f\left[x_{5}\right]$			

z	$\mathrm{f}(\mathrm{z})$	First divided differnces	Second divided differences
$z_{0}=x_{0}$	$f\left[z_{0}\right]=f\left[x_{0}\right]$		
		$f\left[z_{0}, z_{1}\right]=f^{\prime}\left(x_{0}\right)$	
$z_{1}=x_{0}$	$f\left[z_{1}\right]=f\left[x_{0}\right]$		$f\left[z_{0}, z_{1}, z_{2}\right]=\frac{f\left[z_{1}, z_{2}\right]-f\left[z_{0}, z_{1}\right]}{z_{2}-z_{0}}$
		$f\left[z_{1}, z_{2}\right]=\frac{f\left[z_{2}\right]-f\left[z_{1}\right]}{z_{2}-z_{1}}$	
$z_{2}=x_{1}$	$f\left[z_{2}\right]=f\left[x_{1}\right]$		$f\left[z_{1}, z_{2}, z_{3}\right]=\frac{f\left[z_{2}, z_{3}\right]-f\left[z_{1}, z_{2}\right]}{z_{3}-z_{1}}$
		$f\left[z_{2}, z_{3}\right]=f^{\prime}\left(x_{1}\right)$	
$z_{3}=x_{1}$	$f\left[z_{3}\right]=f\left[x_{1}\right]$		$f\left[z_{2}, z_{3}, z_{4}\right]=\frac{f\left[z_{3}, z_{4}\right]-f\left[z_{2}, z_{3}\right]}{z_{4}-z_{2}}$
		$f\left[z_{3}, z_{4}\right]=\frac{f\left[z_{4}\right]-f\left[z_{3}\right]}{z_{4}-z_{3}}$	
$z_{4}=x_{2}$	$f\left[z_{4}\right]=f\left[x_{2}\right]$		$f\left[z_{3}, z_{4}, z_{5}\right]=\frac{f\left[z_{4}, z_{5}\right]-f\left[z_{3}, z_{4}\right]}{z_{5}-z 3}$
		$f\left[z_{4}, z_{5}\right]=f^{\prime}\left(x_{2}\right)$	
$z_{5}=x_{2}$	$f\left[z_{5}\right]=f\left[x_{2}\right]$		

$$
H_{5}=f\left[z_{0}\right]+\sum_{k=1}^{2 n+1} f\left[z_{0}, \ldots, z_{k}\right]\left(x-z_{0}\right)(x-z 1) \ldots\left(x-z_{k-1}\right)
$$

$H(x)=Q_{0,0}+\left(x-x_{0}\right) Q_{11}+Q_{2,2}\left(x-x_{0}\right)^{2}+Q_{3,3}\left(x-x_{0}\right)\left(x-x_{1}\right)+Q_{4,4}\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)^{2}+$ $Q_{5,5}\left(x-x_{2}\right)\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)^{2}$

This polynomial is transformed in following form:

$$
E(\varepsilon)=c_{5} \varepsilon^{5}+c_{4} \varepsilon^{4}+c_{3} \varepsilon^{3}+c_{2} \varepsilon^{2}+c_{1} \varepsilon+c_{0}
$$

Searching for zeros is equivavelent to problem where we want to calculate eigenvalues of companion matrix :

$$
A=\left(\begin{array}{ccccc}
-\frac{c_{4}}{c_{5}} & -\frac{c_{3}}{c_{5}} & -\frac{c_{2}}{c_{5}} & -\frac{c_{1}}{c_{5}} & -\frac{c^{\prime}}{c_{5}} \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

QR method for computing eigenvalues

- Gram-Schmidt
- Given rotation
- Householder transformations

Classical Gram -Shmidt

$$
\begin{aligned}
& u_{1}=a_{1} \text { and } q_{1}=\frac{u_{1}}{\left\|u_{1}\right\|} \\
& u_{k}=a_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{u_{j}} a_{k}
\end{aligned} \quad q_{k}=\frac{u_{k}}{\left\|u_{k}\right\|}
$$

In k-th step we first decompose A and then we calculate A in next iteration

$$
\begin{aligned}
& A^{k}=Q * R \\
& A^{k+1}=R * Q
\end{aligned}
$$

After certain number of iteration we will have convergence

Modified Gram-Schmidt

```
do k=1,5
r(k,k)=sqrt(dot_product(A(1:5,k),A(1:5,k)))
q(1:5,k) = A (1:5,k) / r(k,k);
    do j = k+1,5
    r(k, j) = dot_product(q(1:5, k), A(1:5, j));
    A(1:5,j) =A(1:5, j) -r(k, j)*q(1:5,k);
    end do
```

end do

Structure of SR3D

Observation of eigenvalues

We have to check if we have 2×2 blocks and to flag corresponding elements

Checking if real eigenvalues are in corresponding range

If its not flaged and its in range $(\min \epsilon, \max \epsilon)$ it is written in file results.txt

Various ways for aproximation of function

If only values of function are known:

Least-square method,
Polynomial and trigonometric functions,
Taylor series and Chebyshev approximations, Piecewise polynomial functions,
Splines, cubic splines, B-splines functions, Rational functions, Padé approximations,
Thiele interpolations,
FFT, Neural networks, Genetic algorithms
and so on.

If we have data about values and derivatives of function:

Splines, cubic splines, B-splines ...

Piecewise polynomial functions

Neural networks, Genetic algorithms

