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Green Representation for Electromagnetic field :
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Boundary conditions:
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Rumsey's reaction concept

* The reaction concept between JiMi and gt mi is defined by:
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* This concept can be applied to {E: ﬁ,ﬁ if sources are present in Q:
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Variational formulation of integral equations

* Using the boundary conditions, the total reaction on all domains is expressed as:
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Variational formulation of our problem
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where Py and Qg are deffined as :
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Currents of the triangle T can be expressed as it is written:
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Bilinear lorm 1= tranformed into descrete one
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Matrix Formulation of problem : Ax=C

Integral solver in comparison with Differential solvers :

Matrix A is dense , contains N*N block
Much more storage space

More CPU time




Hermite interpolation
Hermite{Osculating) polinomials are generalization of both the Tavlor and Langrangian poly nomi-
als. I we have given nt 1 points xg, rq, ... , £, and nonnegative integers my, ... Hermite polyvnomial
approximating a function [is ploynomial of at least degree of m;at point 2;where [ belongs to C"™(a, b)

and m - max{mg,...m, } and z; belongs to |ab| lor every 1 0, ... 1.

The degree of this osculating polyvoomial will be at most -

M=>3%m; +n.

The number of conditions to be satisfied is Y mi + (n+1) and a polynomial of degree M has M+ 1
i
coellicients that has to satisly these conditions.
By delinition, il we have nt1 distinct numbers in range |ab| and mjare nonnegative integers
assoclated with a2y, so foreach 1 0, ... , n.
If n mazxr m; and € C™|a, b
0<i<n

s0 Hermite polyvnomial approximating [ is the polvnomial P ol least degree m such that

foreach1 0,1, ... ,nand k 0.1, .., m;.
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If the function [ belongs to C-’l[a? b]aml Tro, T1, ... , T, that are in range |ab| are distinet | tha
unigue polynomial of least degree matching with Fand " at g, 2q, ... , &, 15 the polynomial of degree

at most M 2n-+1 given as :
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and
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here Ly j(x)denotes Langrange coeflicient polynomial of degree n that si defined by [ormula :
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k-th divided difference with respect to x4, ..., Ziep will be

flZiv1 - Tivk] — flzi, i1y Tigp1]
Livk — L4

f[;l’i_:l’r;+l ...... I?Q—k] =

Using Newton divided differences we can simplify programming of
interpolation
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Newton divided differences
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Z () First divided diflfernces Second divided dilferences
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flz0,21] = f'(x0)
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2n+1

Hs = flzo] + Z fl20y oo 26)(2—20) (2 —21)...(2—21—1)
k=1

H(z) = Qoo+ (x — 20)Q11 + Qa2(x — 20)* + Qaa(x — 20)(x — 21) + Qua(x — 20)*(z — 21)* +

Qu__a{i’ - i‘z)(I - T[]JZ{-T - II)Z

This polynomial is transformed in following form:
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Searching for all possible values for which P(€)=0

Searching for zeros is equivavelent to
problem where we want to calculate
eigenvalues of companion matrix :
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QR method for computing eigenvalues

Gram-Schmidt
Given rotation
Householder transformations



Classical Gram -Shmidt
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In k-th step we first decompose A and then we calculate A in
next iteration
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After certain number of iteration we will have convergence



Modified Gram-Schmidt

do k 1.5

vl k) sqrt(dot  product{A{1:5 k), A(1:5.k)))

rik, j) - dot product{qg(1:5, k), A{1:5,])):
A(L:B g A(LS, ) - ik, j) * q(L:h, k);
end do

end do



Structure of SR3D

File with geometry
nd incident fiel

generation of mash

A 4

Generation of matrix A

A 4

factorization of matrix A

A 4

Calculation of current
densities

A 4

File with
scattered field




Files with information
of scattered field

Calculating azimuthal component
Of field

v

calculating coefficient of
Hermite polynomial
(Q0,0Q1,1,... Qs5,5)

h 4

Creating of companion matrix

v

QR decomposition

v

Observation of eigenvalues

3 files ( one with
results and 2 for
Matlab program)




Observation of eigenvalues

We have to check if we have 2 X 2 blocks and to flag corresponding elements

Checking if real eigenvalues are in corresponding range

If its not flaged and its in range ( min €, max €) it is written in file results.txt



Various ways for aproximation of function

22

If only values of function are known:

Least-square method,

Polynomial and trigonometric functions,
Taylor series and Chebyshev approximations,
Piecewise polynomial functions,

Splines, cubic splines, B-splines functions,
Rational functions, Padé approximations,
Thiele interpolations,

FFT, Neural networks, Genetic algorithms
and so on.

If we have data about values
and derivatives of function:

Splines, cubic splines, B-splines ...
Piecewise polynomial functions
Neural networks, Genetic
algorithms



