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1.Introduction

1.1 Description of INRIA Sophia Antipolis
The French National Institute for Research in Computer Science
and Control conducts research in the field of information and com-
munication science and technology.

The scientific research of INRIA are grouped 5 major:

1. Applied Mathematics, Computation and Simulation

2. Algorithmics, Programming, Software and Architecture

3. Networks, Systems and Services, Distributed Computing

4. Perception, Cognition, Interaction

5. Computational Sciences for Biology, Medicine and the Environ-
ment
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1.Introduction

1.1 Description of INRIA Sophia Antipolis
One of project team in Applied Mathematics, Computation and
Simulation theme is

Program Transformations for Scientific Computing
(TROPICS)

1. Automatic Differentiation (AD)

2. Computational Fluid Dynamics (CFD) application of AD

Advisor: Prof.Alain DERVIEUX
Co-advisor: Ms.Anca BELME, Dr.Stephen WORNOM
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1.Introduction

1.2 The Training Aims
In numerical simulation:

• Central Processing Unit (CPU) cost

• Reducing CPU cost

• The behaviours of the sparse matrix

• The developing algorithm of the numerical approximation

In this training:
Improving the algorithm of mesh numbering for the Navier-Stokes
computation in the case of the flow around a circular cylinder.
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2.Navier-Stokes Simulation

2.1 Navier-Stokes equations
The Navier-Stokes equations commonly written as

ρ
(
∂v
∂t + v · ∇v

)
= −∇p +∇ ·T + f

where:
v : the flow velocity
ρ : the fluid density
p : the pressure
T : stress tensor
f : body forces
∇ : the del operator.

6



2.Navier-Stokes Simulation

2.2 Turbulent Flow
What is turbulence?
At Reynolds number (ReD), e.g. ReD � 20000 for external flow,
the velocity and all other flow properties vary in a random and
chaotic way.

Figure 1: Flow structure of turbulent flow
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2.Navier-Stokes Simulation

2.2 Turbulent Flow
How to model the turbulence?
a simple mathematical model that is used to predict the turbulence
phenomena.
such as DNS, LES, RANS model

Figure 2: Comparison of DNS, LES, and RANS
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2.Navier-Stokes Simulation

2.3 Computational Fluid Dynamics (CFD)
What is CFD?
Using computers and numerical techniques to analyze the problems
involving fluid flow.

The main steps in a CFD simulation are:

1. Pre-processing

2. Solving

3. Post-processing
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2.Navier-Stokes Simulation

2.3 Computational Fluid Dynamics (CFD)
Physical problems can be represented as PDE.
PDE’s can be discretized by using a scheme:

1. Finite Difference

2. Finite Volume

3. Finite Element

which gives us a linear system

10



2.Navier-Stokes Simulation

2.3 Computational Fluid Dynamics (CFD)
Need a set of computer program/code for discretizing the problem
by a such way.

This set of computer program, for instance in FORTRAN,
is developed by:

1. Approximate theory,

2. Algorithmic theory.
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2.Navier-Stokes Simulation

2.4 Iterative Method for Solving Linear System
Domain discretization and linearization lead to a matrix system
problem that is formulated as

A.u = f

where A is a square matrix.

Solution algorithms for a linear system:

• Direct method: Gauss elimination

• Iterative method: Incomplete Lower Upper (ILU) factorization,
Generalized Minimal Residual Method (GMRES)
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2.Navier-Stokes Simulation

2.4 Iterative Method for Solving Linear System
In Iterative methods:
⇒ the behaviours/properties of generated matrix are important.

If the generated matrix is a tri-diagonal matrix:
=⇒ ILU is an exact solver in one step.

If the generated matrix is a sparse matrix:

1. Treat the sparse matrix by a preconditioner: ILU preconditioner

2. Iterate by a robust iterative method: GMRES

Question:
How to get a generated matrix as ’good’ as possible?
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2.Navier-Stokes Simulation

2.4 Iterative Method for Solving Linear System
What is preconditioner?
modification of an original linear system.
Let us consider a matrix M that approximates the coeff.matrix A,
the transformed system is:

M−1Au = M−1f

which has the same solution as the original system A.u = f
We call matrix M as preconditioner matrix.

One of the simple preconditioner is ILU.
This entails a decomposition of the form A = LU −R, where:
L and U are the lower and upper parts of A.
R is the residual matrix
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2.Navier-Stokes Simulation

2.5 Best Numbering for ILU
Let us consider two different vertice numberings:
LEXICOGRAPHIC and ORTHOGONAL LEXICOGRAPHIC

⇒ Lexicographic

k = i + (j − 1)imax

⇒ Orthogonal Lexicographic

k = j + (i− 1)jmax

where uk ≡ ai,j
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2.Navier-Stokes Simulation

2.5 Best Numbering for ILU
Domain of vertice numbering schemes

Figure 3: Domain of lexicographic and orthogonal lexicographic
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2.Navier-Stokes Simulation

2.5 Best Numbering for ILU
Generated matrix:

Figure 4: Generated matrix by lexicographic (left) and orthogonal lexicographic(right)

Conclusion:
If |ai−1,j| >> |ai,j−1|
Then choose LEXICOGRAPHIC
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3.Experiments Description

3.1 Numerical Code AERO-08

• Parallel computation on 8 processors of
the cluster NEF at INRIA Sophia Antipolis

• Using a numerical code AERO-08:
FORTRAN code,
Mix of FE-FV,
Compressible/Incompressible flow,
Turbulence models,
Schwartz decomposition method,etc.
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3.Experiments Description

3.2 Compiling and Running AERO-08 Code
Diagram of numerical experiment

Figure 5: Diagram of numerical experiment
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3.Experiments Description

3.3 Renumerotation Method

What is this?
A method of vertices re-numbering for all vertices close to cylinder
surface.

How?
Start with a node in the boundary layer
Find the closest neighbor until we reach the given number of layers
All these are performed in the subroutine RenumILU.f
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3.Experiments Description

3.3 Renumerotation Method
This process has results as

Figure 6: Vertice numbering before (left) and after (right) apply RenumILU.f
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4.Results and Discussions

4.1 Domain Decomposition
Domain of the computation:
consist of 43282 vertices and 228792 tetrahedrals.

Figure 7: Global domain in 3 dimensional view (left) and Global domain in 2 dimensional view (right)
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4.Results and Discussions

4.1 Domain Decomposition
Using parallel computtation in 8 processors.
The number of vertices and tetrahedral for each subdomain:

• subdomain 1 : nsmax,ntmax = 5827, 28938

• subdomain 2 : nsmax,ntmax = 5581, 28091

• subdomain 3 : nsmax,ntmax = 6127, 29449

• subdomain 4 : nsmax,ntmax = 5713, 27781

• subdomain 5 : nsmax,ntmax = 5744, 27767

• subdomain 6 : nsmax,ntmax = 5853, 28957

• subdomain 7 : nsmax,ntmax = 5931, 28889

• subdomain 8 : nsmax,ntmax = 5802, 28920
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4.Results and Discussions

4.1 Domain Decomposition
8 subdomains of the computation:

Figure 8: Domain decomposition
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4.Results and Discussions

4.2 Effects of Renumerotation
Inside the main routine Nsc3Dm-HLLE.f:
⇒ the subroutine SubMesh.f ⇒ RenSom.f ⇒ RenumILU.f

Figure 9: Meshing layers close to surface as the object for applying RenumILU.f
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4.Results and Discussions

4.2 Effects of Renumerotation
Comparison before and after applying RenumILU.f:
Re=100, GMRES iteration=1

Figure 10: Velocity gradient before (left) and after (right) applying RenumILU.f
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4.Results and Discussions

4.2 Effects of Renumerotation
Comparison before and after applying RenumILU.f:
Re=100, GMRES iteration=1

Figure 11: Isovelocity gradient before (left) and after (right) applying RenumILU.f
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4.Results and Discussions

4.2 Effects of Renumerotation
Comparison before and after applying RenumILU.f:
Re=100, GMRES iteration=1

Figure 12: Velocity profile on the surface/boundary

28



5.Conclusions

1. Numerical approximation leads to generate A.u = f

2. The properties of matrix A contribute to the convergence rate
of the iterative method

3. The properties of matrix A are contributed by how the numerical
approximation developed

4. The new subroutine RenumILU.f accelerate the convergence
rate of GMRES

5. The acceleration of the convergence rate reduce the computa-
tion cost
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