Reduced basis approach for nonlinear Elasticity

Henrik Veelken ${ }^{1}$

Supervisors: Victorita Dolean, Pierre-Emmanuel Jabin, Patrice Hauret

Outline

(1) Theory

- theory
(2) Numerics
- numerics
(3) Remarks
- remarks

Outline

(1) Theory

- theory
(2) Numerics
- numerics
(3) Remarks
- remarks

Equations of nonlinear Elasticity

We will look at the equations:

$$
\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x=\int_{\Omega} f \cdot \theta_{i} d x
$$

in the compressible case and
$\left\{\begin{aligned} \int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x+\int_{\Omega} p \operatorname{cof} \nabla \phi: \nabla \theta_{i} d x & =\int_{\Omega} f \cdot \theta_{i} d x \\ \int_{\Omega} p_{i}(\operatorname{det} \nabla \phi-1) & =0\end{aligned}\right.$
in the incompressible case

with

$W(F)=\alpha \cdot\|F\|^{2}+\beta \cdot\|\operatorname{cof} F\|^{2}+\gamma \cdot\|\operatorname{det} F\|^{2}-\delta \cdot \ln (\operatorname{det} F)$
These equations must be fulfilled for all testfunctions $\theta_{i} \in \Theta_{s}$,
where Θ_{s} denotes the finite element solutions subspace.

Equations of nonlinear Elasticity

We will look at the equations:
-

$$
\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x=\int_{\Omega} f \cdot \theta_{i} d x
$$

in the compressible case and

in the incompressible case

with

$W(F)=\alpha \cdot\|F\|^{2}+\beta \cdot\|\operatorname{cof} F\|^{2}+\gamma \cdot\|\operatorname{det} F\|^{2}-\delta \cdot \ln (\operatorname{det} F)$
These equations must be fulfilled for all testfunctions $\theta_{i} \in \Theta_{s}$
where Θ_{s} denotes the finite element solutions subspace.

Equations of nonlinear Elasticity

We will look at the equations:
-

$$
\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x=\int_{\Omega} f \cdot \theta_{i} d x
$$

in the compressible case and

$$
\begin{cases}\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x+\int_{\Omega} p \operatorname{cof} \nabla \phi: \nabla \theta_{i} d x & =\int_{\Omega} f \cdot \theta_{i} d x \\ \int_{\Omega} p_{i}(\operatorname{det} \nabla \phi-1) & =0\end{cases}
$$

in the incompressible case

Equations of nonlinear Elasticity

We will look at the equations:

$$
\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x=\int_{\Omega} f \cdot \theta_{i} d x
$$

in the compressible case and

$$
\begin{cases}\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi): \nabla \theta_{i} d x+\int_{\Omega} p \operatorname{cof} \nabla \phi: \nabla \theta_{i} d x & =\int_{\Omega} f \cdot \theta_{i} d x \\ \int_{\Omega} p_{i}(\operatorname{det} \nabla \phi-1) & =0\end{cases}
$$

in the incompressible case

- with
$W(F)=\alpha \cdot\|F\|^{2}+\beta \cdot\|\operatorname{cof} F\|^{2}+\gamma \cdot\|\operatorname{det} F\|^{2}-\delta \cdot \ln (\operatorname{det} F)$
These equations must be fulfilled for all testfunctions $\theta_{i} \in \Theta_{s}$, where Θ_{s} denotes the finite element solutions subspace.

Basic notions

- Ω is a bounded, open, connected subset of \mathbb{R}^{3} with suffiencently smooth boundary. $\bar{\Omega}$ represents the volume occupied by a body before it is deformed and is called reference configuration.
- One may write
with

where \mathbf{u} is called the displacement.

Basic notions

- Ω is a bounded, open, connected subset of \mathbb{R}^{3} with suffiencently smooth boundary. $\bar{\Omega}$ represents the volume occupied by a body before it is deformed and is called reference configuration.
- One may write

$$
\phi=\mathbf{i d}+\mathbf{u}
$$

with

$$
\mathbf{u}: \bar{\Omega} \rightarrow \mathbb{R}^{3}
$$

where \mathbf{u} is called the displacement.

homogeneous hyperelastic material

Definition

A homogeneous elastic material with response function

$$
\hat{\mathbf{T}}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{M}^{3}
$$

is called homogeneous hyperelastic if there exists a function

$$
\hat{W}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}
$$

differentiable with respect to the variable $\mathbf{F} \in \mathbb{M}_{+}^{3}$, such that

$$
\hat{\mathbf{T}}(\mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{F}), \quad \forall \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

The function \hat{W} is called stored energy function.

minimal property

Fact

The equations of equilibrium are formally equivalent to the equations

$$
I^{\prime}(\phi) \theta=0
$$

with

$$
I(\psi)=\int_{\Omega} \hat{W}(\nabla \psi(x)) d x-\{F(\psi)+G(\psi)\}
$$

So we are looking of a minimum of the functional I!

minimal property

Fact

The equations of equilibrium are formally equivalent to the equations

$$
I^{\prime}(\phi) \theta=0
$$

with

$$
I(\psi)=\int_{\Omega} \hat{W}(\nabla \psi(x)) d x-\{F(\psi)+G(\psi)\}
$$

So we are looking of a minimum of the functional !!

Outline

- theory
(2) Numerics
- numerics
(3) Remarks
- remarks

Finite element system

We were solving the system:

$$
\begin{aligned}
\int_{\Omega} \frac{\partial W}{\partial F}\left(\nabla \phi_{S}\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} M \cdot \underline{\phi}=\int_{\Omega} f \cdot \theta_{i} \forall i & \in\{1 \ldots n\} \\
\phi_{S}(x, y)=\sum_{i=1}^{n} \phi_{i} \theta_{i}(x, y) \quad \underline{\phi} & =\left(\phi_{1} \ldots \phi_{n}\right)^{t}
\end{aligned}
$$

for $\theta_{i} \in P^{1}$ and

System nonlinear \Rightarrow Finite Elements + Newton Algorithm for the ϕ_{i} in ϕ_{S}

Finite element system

We were solving the system:

$$
\begin{aligned}
\int_{\Omega} \frac{\partial W}{\partial F}\left(\nabla \phi_{S}\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} M \cdot \underline{\phi}=\int_{\Omega} f \cdot \theta_{i} \forall & \forall\{1 \ldots n\} \\
\phi_{S}(x, y)=\sum_{i=1}^{n} \phi_{i} \theta_{i}(x, y) \quad \underline{\phi} & =\left(\phi_{1} \ldots \phi_{n}\right)^{t}
\end{aligned}
$$

for $\theta_{i} \in P^{1}$ and

$$
\theta_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}
\delta_{i j} & \text { for } i=1 \ldots m \\
\delta_{(i-m) j} & \text { for } i=m+1 \ldots n
\end{array}, \quad M_{i j}=\int_{\omega} \theta_{i} \cdot \theta_{j} d x\right.
$$

System nonlinear \Rightarrow Finite Elements + Newton Algorithm for the
ϕ_{i} in ϕ_{S}

Finite element system

We were solving the system:

$$
\begin{aligned}
\int_{\Omega} \frac{\partial W}{\partial F}\left(\nabla \phi_{S}\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} M \cdot \underline{\phi}=\int_{\Omega} f \cdot \theta_{i} \forall & \forall\{1 \ldots n\} \\
\phi_{S}(x, y)=\sum_{i=1}^{n} \phi_{i} \theta_{i}(x, y) \quad \underline{\phi} & =\left(\phi_{1} \ldots \phi_{n}\right)^{t}
\end{aligned}
$$

for $\theta_{i} \in P^{1}$ and

$$
\theta_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}
\delta_{i j} & \text { for } i=1 \ldots m \\
\delta_{(i-m) j} & \text { for } i=m+1 \ldots n
\end{array}, \quad M_{i j}=\int_{\omega} \theta_{i} \cdot \theta_{j} d x\right.
$$

System nonlinear \Rightarrow Finite Elements + Newton Algorithm for the ϕ_{i} in ϕ_{S}

Newton Algorithm

0

$$
\begin{gathered}
\left\{\begin{array}{ll}
D G\left(\underline{\phi}^{k}\right) \Delta \phi & =G\left(\underline{\phi}^{k}\right) \\
\underline{\phi}^{k+1} & =\underline{\phi}^{k}-\triangle \phi
\end{array} \quad \underline{\phi}^{k}=\left(\phi_{1}^{k} \ldots \phi_{n}^{k}\right)^{t}\right. \\
{\left[D G\left(\phi^{k}\right)\right]_{i j}=\int_{\Omega} \frac{\partial}{\partial \phi_{j}}\left(\frac{\partial W}{\partial F}(\nabla \phi)\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} \cdot M} \\
{\left[G\left(\underline{\phi}^{k}\right)\right]_{i}=\int_{\Omega} \frac{\partial W}{\partial F}\left(\nabla \phi_{S}\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} M \cdot \phi-\int_{\Omega} f \cdot \theta d x}
\end{gathered}
$$

Newton Algorithm

-

$$
\begin{gathered}
\left\{\begin{array}{ll}
D G\left(\underline{\phi}^{k}\right) \triangle \phi & =G\left(\phi^{k}\right) \\
\underline{\phi}^{k+1} & =\underline{\phi}^{k}-\triangle \phi
\end{array} \underline{\phi}^{k}=\left(\phi_{1}^{k} \ldots \phi_{n}^{k}\right)^{t}\right. \\
{\left[D G\left(\underline{\phi}^{k}\right)\right]_{i j}=\int_{\Omega} \frac{\partial}{\partial \phi_{j}}\left(\frac{\partial W}{\partial F}(\nabla \phi)\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} \cdot M} \\
{\left[G\left(\underline{\phi}^{k}\right)\right]_{i}=\int_{\Omega} \frac{\partial W}{\partial F}(\nabla \phi S): \nabla \theta_{i} d x+\frac{1}{\varepsilon} M \cdot \phi-\int_{\Omega} f \cdot \theta d x}
\end{gathered}
$$

Newton Algorithm

$-$

$$
\left\{\begin{array}{ll}
D G\left(\underline{\phi}^{k}\right) \triangle \phi & =G\left(\underline{\phi}^{k}\right) \\
\underline{\phi}^{k+1} & =\underline{\phi}^{k}-\triangle \phi
\end{array} \quad \underline{\phi}^{k}=\left(\phi_{1}^{k} \ldots \phi_{n}^{k}\right)^{t}\right.
$$

$$
\left[D G\left(\underline{\phi}^{k}\right)\right]_{i j}=\int_{\Omega} \frac{\partial}{\partial \phi_{j}}\left(\frac{\partial W}{\partial F}(\nabla \phi)\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} \cdot M
$$

$$
\left[G\left(\underline{\phi}^{k}\right)\right]_{i}=\int_{\Omega} \frac{\partial W}{\partial F}\left(\nabla \phi_{S}\right): \nabla \theta_{i} d x+\frac{1}{\varepsilon} M \cdot \underline{\phi}-\int_{\Omega} f \cdot \theta d x
$$

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions as basis functions in our finite elements solution subspace i.e. $\Theta_{S}=U_{r}=\operatorname{span}\left\{u_{i}, i=1 \ldots l\right\}$, where u_{i} are the displacements of the solutions ϕ_{S}.

We end up solving

\Longrightarrow For the reduced basis system the Matrix in the Newton system is not sparse anymore!

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions as basis functions in our finite elements solution subspace i.e.
$\Theta_{S}=U_{r}=\operatorname{span}\left\{u_{i}, i=1 \ldots l\right\}$, where u_{i} are the displacements of the solutions ϕ_{S}.

We end up solving

$$
\int_{\Omega} \frac{\partial W}{\partial F}\left(I d+\nabla u_{r}\right): \nabla \delta u_{r} d x=\int_{\Omega} f \cdot \delta u_{r} d x, \forall \delta u_{r} \in U_{r}
$$

\Longrightarrow For the reduced basis system the Matrix in the Newton system
is not sparse anymore!

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions as basis functions in our finite elements solution subspace i.e.
$\Theta_{S}=U_{r}=\operatorname{span}\left\{u_{i}, i=1 \ldots l\right\}$, where u_{i} are the displacements of the solutions ϕ_{S}.

We end up solving

$$
\int_{\Omega} \frac{\partial W}{\partial F}\left(I d+\nabla u_{r}\right): \nabla \delta u_{r} d x=\int_{\Omega} f \cdot \delta u_{r} d x, \forall \delta u_{r} \in U_{r}
$$

\Longrightarrow For the reduced basis system the Matrix in the Newton system is not sparse anymore!

Plots

\Longrightarrow go to Matlab!

Plots

\Longrightarrow go to Matlab!

Numerical Results:

We have chosen $f(x, y)$ linear in both components, $\alpha=\beta=\gamma=1, \delta=5$, Number Nodes $=2121$
Domain $=[0,5] \times[0,1], e=\underline{u}_{F E}-\underline{u}_{R B}$

$f_{1}(x, y)=\binom{-0.8}{-0.8}$	$\\|e\\|_{2}$	$\\|e\\|_{\infty}$
$I=6$	9.04025	0.33289
$\mid=12$	2.61462	0.12019
$\mid=18$	1.5115	0.07257
$\mid=24$	0.72561	0.02598
$\mid=30$	0.61432	0.02661

Numerical Results:

We have chosen $f(x, y)$ linear in both components,
$\alpha=\beta=\gamma=1, \delta=5$, Number Nodes $=2121$
Domain $=[0,5] \times[0,1], e=\underline{u}_{F E}-\underline{u}_{R B}$

$f_{1}(x, y)=\binom{-0.8}{-0.8}$	$\\|e\\|_{2}$	$\\|e\\|_{\infty}$
$\mathrm{I}=6$	9.04025	0.33289
$\mathrm{I}=12$	2.61462	0.12019
$\mathrm{I}=18$	1.5115	0.07257
$\mathrm{I}=24$	0.72561	0.02598
$\mathrm{I}=30$	0.61432	0.02661

Numerical Results 2:

$f_{2}(x, y)=\binom{0.4 x+0.3 y-0.2}{-0.5 x+y+0.3}$	$\\|e\\|_{2}$	$\\|e\\|_{\infty}$
$\mathrm{I}=6$	7.23828	0.29562
$\mathrm{I}=12$	4.47455	0.18567
$\mathrm{l}=18$	3.52092	0.14728
$\mathrm{I}=24$	2.22963	0.0936
$\mathrm{I}=30$	1.29669	0.05495

Numerical Results 2:

$f_{2}(x, y)=\binom{0.4 x+0.3 y-0.2}{-0.5 x+y+0.3}$	$\\|e\\|_{2}$	$\\|e\\|_{\infty}$
$\mathrm{I}=6$	7.23828	0.29562
$\mathrm{I}=12$	4.47455	0.18567
$\mathrm{I}=18$	3.52092	0.14728
$\mathrm{I}=24$	2.22963	0.0936
$\mathrm{I}=30$	1.29669	0.05495
$f_{3}(x, y)=\binom{0}{\sin \left(\frac{2 \pi}{5} \cdot x\right)}$	$\\|e\\|_{2}$	$\\|e\\|_{\infty}$
$\mathrm{I}=6$	4.93955	0.17723
$\mathrm{I}=12$	3.39434	0.1344
$\mathrm{I}=18$	2.01984	0.08634
$\mathrm{I}=24$	1.24071	0.05417
$\mathrm{I}=30$	0.44359	0.01943

Times

We had converging problems for $I=24 \wedge I=30$ due to the basis functions, that are added!

	f_{1}	f_{2}	f_{3}
exact	37.61 s	45.15 s	29.27 s
$\mathrm{I}=6$	6.8 s	6.83 s	5.27 s
$\mathrm{I}=12$	24.15 s	23.83 s	22.24 s
$\mathrm{I}=18$	61.04 s	59.92 s	49.33 s
$\mathrm{I}=24$	354.96 s	345.11 s	101.32 s
$\mathrm{I}=30$	566.57 s	506.87 s	498.63 s

Times

We had converging problems for $I=24 \wedge I=30$ due to the basis functions, that are added!

	f_{1}	f_{2}	f_{3}
exact	37.61 s	45.15 s	29.27 s
$\mathrm{I}=6$	6.8 s	6.83 s	5.27 s
$\mathrm{I}=12$	24.15 s	23.83 s	22.24 s
$\mathrm{I}=18$	61.04 s	59.92 s	49.33 s
$\mathrm{I}=24$	354.96 s	345.11 s	101.32 s
$\mathrm{I}=30$	566.57 s	506.87 s	498.63 s

Outline

(1) Theory

- theory
(2) Numerics
- numerics
(3) Remarks
- remarks

Remarks

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with $\mathrm{I}=12$. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important how the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

Remarks

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with $\mathrm{I}=12$. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important how the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

Remarks

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with $\mathrm{I}=12$. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important how the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still
approximated in a good way, so even if one has computed the
basisfunctions in a certain set, one can extend the possible
RHSs to a bigger space.

Remarks

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with $\mathrm{I}=12$. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important how the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

Q Phillippe G. Ciarlet
Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. North-Holland, 1988.

國 Patrice Hauret.
Reduced Basis Approach for Nonlinear Elasticity. February 17, 2009

