Reduced basis approach for nonlinear Elasticity

Henrik Veelken¹

Supervisors: Victorita Dolean, Pierre-Emmanuel Jabin, Patrice Hauret

nonlinear Elasticity

Outline

nonlinear Elasticity

@▶ ▲ ≧▶

三日 のへの

Nur	heory nerics marks	theory		

Outline

Numericsnumerics

nonlinear Elasticity

@▶ ∢ ≣▶

= 990

ł

theory

Equations of nonlinear Elasticity

We will look at the equations:

$$\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \, dx = \int_{\Omega} f \cdot \theta_i \, dx$$

in the compressible case and

۰

 $\begin{cases} \int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \, dx + \int_{\Omega} p \, cof \nabla \phi : \nabla \theta_i \, dx &= \int_{\Omega} f \cdot \theta_i \, dx \\ \int_{\Omega} p_i (\det \nabla \phi - 1) &= 0 \end{cases}$

in the incompressible case

with

theory

Equations of nonlinear Elasticity

We will look at the equations:

 $\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \ dx = \int_{\Omega} f \cdot \theta_i \ dx$

in the compressible case and

0

٠

 $\begin{cases} \int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \, dx + \int_{\Omega} p \, cof \nabla \phi : \nabla \theta_i \, dx &= \int_{\Omega} f \cdot \theta_i \, dx \\ \int_{\Omega} p_i (\det \nabla \phi - 1) &= 0 \end{cases}$

in the incompressible case

with

theory

Equations of nonlinear Elasticity

We will look at the equations:

$$\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \ dx = \int_{\Omega} f \cdot \theta_i \ dx$$

in the compressible case and

۲

٠

$$\begin{cases} \int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \, dx + \int_{\Omega} p \, cof \nabla \phi : \nabla \theta_i \, dx &= \int_{\Omega} f \cdot \theta_i \, dx \\ \int_{\Omega} p_i (\det \nabla \phi - 1) &= 0 \end{cases}$$

in the incompressible case

with

theory

Equations of nonlinear Elasticity

We will look at the equations:

$$\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \ dx = \int_{\Omega} f \cdot \theta_i \ dx$$

in the compressible case and

٩

٠

$$\begin{cases} \int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi) : \nabla \theta_i \, dx + \int_{\Omega} p \, cof \nabla \phi : \nabla \theta_i \, dx &= \int_{\Omega} f \cdot \theta_i \, dx \\ \int_{\Omega} p_i (\det \nabla \phi - 1) &= 0 \end{cases}$$

in the incompressible case

with

- Ω is a bounded, open, connected subset of R³ with suffiencently smooth boundary. Ω
 represents the volume occupied by a body before it is deformed and is called reference configuration.
- One may write

with

Basic notions

$$\mathbf{u}:\bar{\Omega}\to\mathbb{R}^3$$

where **u** is called the **displacement**.

- Ω is a bounded, open, connected subset of \mathbb{R}^3 with suffiencently smooth boundary. $\overline{\Omega}$ represents the volume occupied by a body before it is deformed and is called **reference configuration**.
- One may write

$$\phi = \mathsf{id} + \mathsf{u}$$

with

$$u:\bar\Omega\to\mathbb{R}^3$$

where \mathbf{u} is called the **displacement**.

theory

homogeneous hyperelastic material

Definition

A homogeneous elastic material with response function

$$\hat{\textbf{T}}:\mathbb{M}^3_+\to\mathbb{M}^3$$

is called homogeneous hyperelastic if there exists a function

$$\hat{W}: \mathbb{M}^3_+ \to \mathbb{R}$$

differentiable with respect to the variable $\textbf{F} \in \mathbb{M}^3_+,$ such that

$$\hat{\mathsf{T}}(\mathsf{F}) = rac{\partial \hat{\mathcal{W}}}{\partial \mathsf{F}}(\mathsf{F}), \qquad \forall \mathsf{F} \in \mathbb{M}^3_+$$

. The function \hat{W} is called **stored energy function**.

theory

minimal property

Fact

The equations of equilibrium are formally equivalent to the equations

$$I'(\phi) heta=0$$

with

$$I(\psi) = \int_{\Omega} \hat{W}(\nabla \psi(x)) dx - \{F(\psi) + G(\psi)\}.$$

So we are looking of a *minimum* of the functional *I*!

1.2

theory

minimal property

Fact

The equations of equilibrium are formally equivalent to the equations

$$I'(\phi)\theta = 0$$

with

$$I(\psi) = \int_{\Omega} \hat{W}(\nabla \psi(x)) dx - \{F(\psi) + G(\psi)\}.$$

So we are looking of a *minimum* of the functional *I*!

< A > <

1.2

Outline

nonlinear Elasticity

・日・ ・ ヨ・ ・

三日 のへの

numerics

Finite element system

We were solving the system:

$$\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi_{S}) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} M \cdot \underline{\phi} = \int_{\Omega} f \cdot \theta_{i} \, \forall i \in \{1 \dots n\}$$
$$\phi_{S}(x, y) = \sum_{i=1}^{n} \phi_{i} \theta_{i}(x, y) \qquad \underline{\phi} = (\phi_{1} \dots \phi_{n})^{t}$$

for $\theta_i \in P^1$ and

$$\theta_i(x_j) = \begin{cases} \delta_{ij} & \text{for } i = 1 \dots m \\ \delta_{(i-m)j} & \text{for } i = m+1 \dots n \end{cases}, \qquad M_{ij} = \int_{\omega} \theta_i \cdot \theta_j \, dx$$

System nonlinear \Rightarrow Finite Elements + Newton Algorithm for the ϕ_i in ϕ_S

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

ъ

numerics

Finite element system

We were solving the system:

$$\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi_{S}) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} M \cdot \underline{\phi} = \int_{\Omega} f \cdot \theta_{i} \, \forall i \in \{1 \dots n\}$$
$$\phi_{S}(x, y) = \sum_{i=1}^{n} \phi_{i} \theta_{i}(x, y) \qquad \underline{\phi} = (\phi_{1} \dots \phi_{n})^{t}$$

for $\theta_i \in P^1$ and

$$\theta_i(x_j) = \begin{cases} \delta_{ij} & \text{for } i = 1 \dots m \\ \delta_{(i-m)j} & \text{for } i = m+1 \dots n \end{cases}, \qquad M_{ij} = \int_{\omega} \theta_i \cdot \theta_j \, dx$$

System nonlinear \Rightarrow Finite Elements + Newton Algorithm for the ϕ_i in ϕ_S

<□> < 三> < 三> < 三> < 三> < 三> < ○<

numerics

Finite element system

We were solving the system:

$$\int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi_{S}) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} M \cdot \underline{\phi} = \int_{\Omega} f \cdot \theta_{i} \, \forall i \in \{1 \dots n\}$$
$$\phi_{S}(x, y) = \sum_{i=1}^{n} \phi_{i} \theta_{i}(x, y) \qquad \underline{\phi} = (\phi_{1} \dots \phi_{n})^{t}$$

for $\theta_i \in P^1$ and

$$heta_i(x_j) = egin{cases} \delta_{ij} & \mbox{for } i = 1 \dots m \ \delta_{(i-m)j} & \mbox{for } i = m+1 \dots n \ \end{pmatrix}, \qquad M_{ij} = \int_{\omega} heta_i \cdot heta_j \ dx$$

System nonlinear \Rightarrow Finite Elements + Newton Algorithm for the ϕ_i in ϕ_S

numerics

Newton Algorithm

۲

$$\begin{cases} DG(\underline{\phi}^{k}) \triangle \phi &= G(\underline{\phi}^{k}) \\ \underline{\phi}^{k+1} &= \underline{\phi}^{k} - \triangle \phi \end{cases} \xrightarrow{\underline{\phi}^{k}} \Phi^{k} = (\phi_{1}^{k} \dots \phi_{n}^{k})^{t}$$

$$\left[DG(\underline{\phi}^{k})\right]_{ij} = \int_{\Omega} \frac{\partial}{\partial \phi_{j}} \left(\frac{\partial V}{\partial F}(\nabla \phi)\right) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} \cdot M$$

$$\left[G(\underline{\phi}^{k})\right]_{i} = \int_{\Omega} \frac{\partial W}{\partial F} \left(\nabla\phi_{S}\right) : \nabla\theta_{i} \, dx + \frac{1}{\varepsilon}M \cdot \underline{\phi} - \int_{\Omega} f \cdot \theta \, dx$$

イロン イロン イヨン イヨン

三日 のへで

numerics

Newton Algorithm

• $\begin{cases} DG(\underline{\phi}^{k}) \triangle \phi &= G(\underline{\phi}^{k}) \\ \underline{\phi}^{k+1} &= \underline{\phi}^{k} - \triangle \phi \end{cases} \quad \underline{\phi}^{k} = (\phi_{1}^{k} \dots \phi_{n}^{k})^{t} \\ \begin{bmatrix} DG(\underline{\phi}^{k}) \end{bmatrix}_{ij} = \int_{\Omega} \frac{\partial}{\partial \phi_{j}} \left(\frac{\partial W}{\partial F} (\nabla \phi) \right) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} \cdot M \end{cases}$

 $\left[G(\underline{\phi}^{k})\right]_{i} = \int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi_{S}) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} M \cdot \underline{\phi} - \int_{\Omega} f \cdot \theta \, dx$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

numerics

Newton Algorithm

۲

٢

۲

$$\begin{cases} DG(\underline{\phi}^k) \triangle \phi &= G(\underline{\phi}^k) & \underline{\phi}^k = (\phi_1^k \dots \phi_n^k)^t \\ \underline{\phi}^{k+1} &= \underline{\phi}^k - \triangle \phi \end{cases}$$

$$\left[DG(\underline{\phi}^{k})\right]_{ij} = \int_{\Omega} \frac{\partial}{\partial \phi_{j}} \left(\frac{\partial W}{\partial F}(\nabla \phi)\right) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} \cdot M$$

$$\left[G(\underline{\phi}^{k})\right]_{i} = \int_{\Omega} \frac{\partial W}{\partial F} (\nabla \phi_{S}) : \nabla \theta_{i} \, dx + \frac{1}{\varepsilon} M \cdot \underline{\phi} - \int_{\Omega} f \cdot \theta \, dx$$

・ロト ・部ト ・ヨト ・ヨト

三日 のへで

numerics

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions as basis functions in our finite elements solution subspace i.e. $\Theta_S = U_r = span\{u_i, i = 1...I\}$, where u_i are the displacements of the solutions ϕ_S .

We end up solving

$$\int_{\Omega} \frac{\partial W}{\partial F} (Id + \nabla u_r) : \nabla \delta u_r \ dx = \int_{\Omega} f \cdot \delta u_r \ dx, \ \forall \delta u_r \in U_r$$

 \implies For the reduced basis system the Matrix in the Newton system is not sparse anymore!

numerics

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions as basis functions in our finite elements solution subspace i.e. $\Theta_S = U_r = span\{u_i, i = 1...I\}$, where u_i are the displacements of the solutions ϕ_S .

We end up solving

$$\int_{\Omega} \frac{\partial W}{\partial F} (Id + \nabla u_r) : \nabla \delta u_r \ dx = \int_{\Omega} f \cdot \delta u_r \ dx, \ \forall \delta u_r \in U_r$$

 \implies For the reduced basis system the Matrix in the Newton system is not sparse anymore!

numerics

Reduced basis approach

basic Idea

The basic idea is to precompute solutions and use those solutions as basis functions in our finite elements solution subspace i.e. $\Theta_S = U_r = span\{u_i, i = 1...I\}$, where u_i are the displacements of the solutions ϕ_S .

We end up solving

$$\int_{\Omega} \frac{\partial W}{\partial F} (Id + \nabla u_r) : \nabla \delta u_r \ dx = \int_{\Omega} f \cdot \delta u_r \ dx, \ \forall \delta u_r \in U_r$$

 \Longrightarrow For the reduced basis system the Matrix in the Newton system is not sparse anymore!

	Theory Numerics Remarks	numerics	
Plots			

 \implies go to Matlab!

・ロト ・國ト ・国ト ・国王 うへぐ

	Theory Numerics Remarks	numerics	
Plots			

 \Longrightarrow go to Matlab!

nonlinear Elasticity

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

三日 りょで

We have chosen f(x, y) linear in both components, $\alpha = \beta = \gamma = 1$, $\delta = 5$, Number Nodes = 2121 Domain= $[0,5] \times [0,1]$, $e = \underline{u}_{FE} - \underline{u}_{RB}$

$f_1(x,y) = \left(\begin{array}{c} -0.8\\ -0.8 \end{array}\right)$	e ₂	<i>e</i> ∞
l=6	9.04025	0.33289
l=12	2.61462	0.12019
l=18	1.5115	0.07257
I=24	0.72561	0.02598
I=30	0.61432	0.02661

We have chosen f(x, y) linear in both components, $\alpha = \beta = \gamma = 1, \ \delta = 5$, Number Nodes = 2121 Domain= $[0,5] \times [0,1]$, $e = \underline{u}_{FE} - \underline{u}_{RB}$ -0.8 -0.8 $f_1(x,y) = ($ $\|e\|_2$ $\|e\|_{\infty}$ l=69.04025 0.33289 I = 122.61462 0.12019 |=181.5115 0.07257 l = 240.72561 0.02598 I = 300.61432 0.02661

Theory Numerics

numerics

Numerical Results 2:

$f_2(x,y) = \begin{pmatrix} 0.4x + 0.3y - 0\\ -0.5x + y + 0 \end{pmatrix}$			$e\ _2$	$\ e\ _{\infty}$	
I=6		7.2	23828	0.29562	
I=12		4.4	17455	0.18567	
I=18		3.5	52092	0.14728	
I=24		2.2	22963	0.0936	
I=30		1.2	29669	0.05495	
$f_3(x,y) = \left(\begin{array}{c} 0\\ \sin\left(\frac{2\pi}{5} \cdot x\right) \end{array}\right)$	e	2	e	00	
I=6	4.939	55	0.177	23	
I=12	3.394	34	0.134	44	
I=18	2.019	84		534	
I=24	1.240	71		17	
I=30	0.443	59	0.019)43	
			•		1

三日 のへで

Theory Numerics

numerics

Numerical Results 2:

$f_2(x,y) = \begin{pmatrix} 0.4x + 0.3y - 0\\ -0.5x + y + 0 \end{pmatrix}$			$e\ _2$		$e \parallel_{\infty}$
I=6		7.2	23828	0.2	29562
I=12		4.4	17455	0.1	18567
I=18		3.5	52092	0.1	L4728
l=24		2.2	22963	0.	0936
I=30		1.2	29669	0.0)5495
$f_3(x,y) = \begin{pmatrix} 0\\ \sin\left(\frac{2\pi}{5} \cdot x\right) \end{pmatrix}$	<i>e</i>	2	$\ e\ $	∞	
I=6	4.939	955	0.177	23	
I=12	3.394	34	0.134	44	
I=18	2.019	84	0.086	34	1
I=24	1.240)71	0.054	17	1
I=30	0.443	859	0.019	43]

▲□ ▶ ▲ 三 ▶

三日 のへで

We had converging problems for $I = 24 \land I = 30$ due to the basis functions, that are added!

	f_1	f_2	f_3
exact	37.61s	45.15s	29.27s
I=6	6.8s	6.83s	5.27s
l=12	24.15s	23.83s	22.24s
I=18	61.04s	59.92s	49.33s
I=24	354.96s	345.11s	101.32s
I=30	566.57s	506.87s	498.63s

ELE DOG

We had converging problems for $I = 24 \land I = 30$ due to the basis functions, that are added!

	f_1	f_2	f_3
exact	37.61s	45.15s	29.27s
I=6	6.8s	6.83s	5.27s
I=12	24.15s	23.83s	22.24s
l=18	61.04s	59.92s	49.33s
I=24	354.96s	345.11s	101.32s
I=30	566.57s	506.87s	498.63s

ELE DOG

	Theory Numerics Remarks	remarks	
Outline			

Numericsnumerics

nonlinear Elasticity

三日 のへの

Remarks Remarks

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with I=12. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important **how** the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

→ < Ξ → <</p>

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with I=12. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important **how** the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

→ < Ξ → <</p>

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with I=12. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important **how** the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

- In my code the FE-Algorithm was almost as fast as the RB-Algorithm with I=12. The RB-Algorithm can be speed up, but the aim should be to keep the RB-basis low dimensional.
- It is very important **how** the basis functions in the RB-Algorithm are chosen! In my case the last added solutions are badly chosen, because the Jacobian in the Newton-Algorithm becomes badly scaled.
- It seems like even RHSs that are not linear are still approximated in a good way, so even if one has computed the basisfunctions in a certain set, one can extend the possible RHSs to a bigger space.

Appendix

nonlinear Elasticity

Phillippe G. Ciarlet Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. North-Holland, 1988.

Patrice Hauret.

Reduced Basis Approach for Nonlinear Elasticity.

February 17, 2009