Real and Functional Analysis

Additional Info

  • ECTS credits: 6
  • University: University of L'Aquila
  • Semester: 1
  • Objectives:


    Introducing basic tools of advanced real analysis such as metric spaces, Banach spaces, Hilbert spaces, bounded operators, weak convergences, compact operators, weak and strong compactness in metric spaces, spectral theory, in order to allow the student to formulate and solve linear ordinary differential equations partial differential equations, classical variational problems, and numerical approximation problems in an "abstract" form.

  • Topics:


    • Metric spaces, normed linear spaces. Topology in metric spaces. Compactness.
    • Spaces of continuous functions.  Convergence of function sequences. Approximation by polynomials. Compactness in spaces of continuous functions. Arzelà's theorem. Contraction mapping theorem.
    • Crash course on Lebesgue meausre and integration. Limit exchange theorema. Lp spaces. Completeness of Lp spaces.
    • Introduction to the theory of linear bounded operators on Banach spaces. Bounded operators. Dual norm. Examples. Riesz' lemma. Norm convergence for bounded operators.
    • Hilbert spaces. Elementary properties. Orthogonality. Orthogonal projections. Bessel's inequality. Orthonormal bases. Examples.
    • Bounded operators on Hilbert spaces. Dual of a Hilbert space. Adjoin operator, self-adjoint operators, unitary operators. Applications. Weak convergence on Hilbert spaces. Banach-Alaoglu's theorem.
    • Introduction to spectral theory. Compact operators. Spectral theorem for self-adjoint compact operators on Hilbert spaces. Hilbert-Schmidt operators. Functions of operators.
    • Introduction to the theory of unbounded operators. Linear differential operators. Applications.
    • Introduction to infinite-dimensional differential calculus and variational methods.
  • Prerequisites:


    Basic calculus and analysis in several variables, linear algebra.

  • Books:


    • John K. Hunter, Bruno Nachtergaele, Applied Analysis. World Scientific.
    • H. Brezis, Funtional Analysis, Sobolev Spaces, and partial differential equations. Springer.
Read 9477 times Last modified on Monday, 13 September 2021 21:30
Home Structure Semester 1 Course units Real and Functional Analysis

Connect with us

Our partners' addresses

University of L'Aquila, Italy (UAQ)

Department of Information Engineering, Computer Science and Mathematics, via Vetoio (Coppito), 1 – 67100 L’Aquila (Italy)

University of Hamburg , Germany (UHH)

Department of Mathematics
Bundesstr. 55
20146 Hamburg - Germany

University of Côte d'Azur, Nice - France (UCA)

Laboratoire J.A.Dieudonné
Parc Valrose, France-06108 NICE Cedex 2